DASS: Differentiable Architecture Search for Sparse Neural Networks

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Embedded Computing Systems Pub Date : 2023-09-09 DOI:10.1145/3609385
Hamid Mousavi, Mohammad Loni, Mina Alibeigi, Masoud Daneshtalab
{"title":"DASS: Differentiable Architecture Search for Sparse Neural Networks","authors":"Hamid Mousavi, Mohammad Loni, Mina Alibeigi, Masoud Daneshtalab","doi":"10.1145/3609385","DOIUrl":null,"url":null,"abstract":"The deployment of Deep Neural Networks (DNNs) on edge devices is hindered by the substantial gap between performance requirements and available computational power. While recent research has made significant strides in developing pruning methods to build a sparse network for reducing the computing overhead of DNNs, there remains considerable accuracy loss, especially at high pruning ratios. We find that the architectures designed for dense networks by differentiable architecture search methods are ineffective when pruning mechanisms are applied to them. The main reason is that the current methods do not support sparse architectures in their search space and use a search objective that is made for dense networks and does not focus on sparsity. This paper proposes a new method to search for sparsity-friendly neural architectures. It is done by adding two new sparse operations to the search space and modifying the search objective. We propose two novel parametric SparseConv and SparseLinear operations in order to expand the search space to include sparse operations. In particular, these operations make a flexible search space due to using sparse parametric versions of linear and convolution operations. The proposed search objective lets us train the architecture based on the sparsity of the search space operations. Quantitative analyses demonstrate that architectures found through DASS outperform those used in the state-of-the-art sparse networks on the CIFAR-10 and ImageNet datasets. In terms of performance and hardware effectiveness, DASS increases the accuracy of the sparse version of MobileNet-v2 from 73.44% to 81.35% (+7.91% improvement) with a 3.87× faster inference time.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"27 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609385","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

The deployment of Deep Neural Networks (DNNs) on edge devices is hindered by the substantial gap between performance requirements and available computational power. While recent research has made significant strides in developing pruning methods to build a sparse network for reducing the computing overhead of DNNs, there remains considerable accuracy loss, especially at high pruning ratios. We find that the architectures designed for dense networks by differentiable architecture search methods are ineffective when pruning mechanisms are applied to them. The main reason is that the current methods do not support sparse architectures in their search space and use a search objective that is made for dense networks and does not focus on sparsity. This paper proposes a new method to search for sparsity-friendly neural architectures. It is done by adding two new sparse operations to the search space and modifying the search objective. We propose two novel parametric SparseConv and SparseLinear operations in order to expand the search space to include sparse operations. In particular, these operations make a flexible search space due to using sparse parametric versions of linear and convolution operations. The proposed search objective lets us train the architecture based on the sparsity of the search space operations. Quantitative analyses demonstrate that architectures found through DASS outperform those used in the state-of-the-art sparse networks on the CIFAR-10 and ImageNet datasets. In terms of performance and hardware effectiveness, DASS increases the accuracy of the sparse version of MobileNet-v2 from 73.44% to 81.35% (+7.91% improvement) with a 3.87× faster inference time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏神经网络的可微结构搜索
深度神经网络(dnn)在边缘设备上的部署受到性能要求和可用计算能力之间巨大差距的阻碍。虽然最近的研究在开发修剪方法以构建稀疏网络以减少dnn的计算开销方面取得了重大进展,但仍然存在相当大的准确性损失,特别是在高修剪比率时。我们发现用可微体系结构搜索方法为密集网络设计的体系结构在应用剪枝机制时是无效的。主要原因是当前的方法在其搜索空间中不支持稀疏架构,并且使用为密集网络设计的搜索目标,而不关注稀疏性。本文提出了一种搜索稀疏友好神经结构的新方法。它通过在搜索空间中增加两个新的稀疏操作和修改搜索目标来实现。我们提出了两种新的参数化的SparseConv和SparseLinear操作,以扩展搜索空间以包含稀疏操作。特别是,由于使用线性和卷积操作的稀疏参数版本,这些操作形成了一个灵活的搜索空间。提出的搜索目标使我们能够基于搜索空间操作的稀疏性来训练体系结构。定量分析表明,通过DASS找到的架构优于CIFAR-10和ImageNet数据集上最先进的稀疏网络中使用的架构。在性能和硬件效率方面,DASS将MobileNet-v2的稀疏版本的准确率从73.44%提高到81.35%(提高7.91%),推理时间提高了3.87倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Embedded Computing Systems
ACM Transactions on Embedded Computing Systems 工程技术-计算机:软件工程
CiteScore
3.70
自引率
0.00%
发文量
138
审稿时长
6 months
期刊介绍: The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.
期刊最新文献
Multi-Traffic Resource Optimization for Real-Time Applications with 5G Configured Grant Scheduling Dynamic Cluster Head Selection in WSN Lightweight Hardware-Based Cache Side-Channel Attack Detection for Edge Devices (Edge-CaSCADe) Reordering Functions in Mobiles Apps for Reduced Size and Faster Start-Up NAVIDRO, a CARES architectural style for configuring drone co-simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1