{"title":"Modular DFR: Digital Delayed Feedback Reservoir Model for Enhancing Design Flexibility","authors":"Sosei Ikeda, Hiromitsu Awano, Takashi Sato","doi":"10.1145/3609105","DOIUrl":null,"url":null,"abstract":"A delayed feedback reservoir (DFR) is a type of reservoir computing system well-suited for hardware implementations owing to its simple structure. Most existing DFR implementations use analog circuits that require both digital-to-analog and analog-to-digital converters for interfacing. However, digital DFRs emulate analog nonlinear components in the digital domain, resulting in a lack of design flexibility and higher power consumption. In this paper, we propose a novel modular DFR model that is suitable for fully digital implementations. The proposed model reduces the number of hyperparameters and allows flexibility in the selection of the nonlinear function, which improves the accuracy while reducing the power consumption. We further present two DFR realizations with different nonlinear functions, achieving 10× power reduction and 5.3× throughput improvement while maintaining equal or better accuracy.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"29 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609105","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
A delayed feedback reservoir (DFR) is a type of reservoir computing system well-suited for hardware implementations owing to its simple structure. Most existing DFR implementations use analog circuits that require both digital-to-analog and analog-to-digital converters for interfacing. However, digital DFRs emulate analog nonlinear components in the digital domain, resulting in a lack of design flexibility and higher power consumption. In this paper, we propose a novel modular DFR model that is suitable for fully digital implementations. The proposed model reduces the number of hyperparameters and allows flexibility in the selection of the nonlinear function, which improves the accuracy while reducing the power consumption. We further present two DFR realizations with different nonlinear functions, achieving 10× power reduction and 5.3× throughput improvement while maintaining equal or better accuracy.
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.