Sarah Habeeb Hamed, Ebaa Adnan Azooz, Emad Abbas Jaffar Al-Mulla
{"title":"Nanoparticles-assisted Wound Healing: A Review","authors":"Sarah Habeeb Hamed, Ebaa Adnan Azooz, Emad Abbas Jaffar Al-Mulla","doi":"10.26599/nbe.2023.9290039","DOIUrl":null,"url":null,"abstract":"Poor wound treatment impacts millions of humans worldwide, increasing deaths and costs. Wounds have three key complications: (a) a lack of an adequate environment for cell migration, proliferation, and angiogenesis; (b) microbial infection; and (c) unstable and prolonged inflammation.Regrettably, contemporary therapeutic treatments have not entirely tackled these basic difficulties and thus have insufficient medical accomplishment. The incorporation of the extraordinary capabilities of nanomaterials in wound healing has achieved major successes over the years. Nanomaterials can promote a variety of cellular and molecular processes that assist in the wound microenvironment through antibacterial, anti-inflammatory, and angiogenic activities, potentially shifting the surroundings from nonhealing to healing. The current review focuses on novel techniques, with a particular focus on recent revolutionary wound healing and infection control tactics based on nanomaterials, such as nanoparticles, nanocomposites, and scaffolds, which are discussed in depth. Furthermore, the effectiveness of nanoparticles as carriers for therapeutic compounds in wound-healing applications has been investigated which provide researchers an up-to-date sources on the use of nanomaterials and their creative ways that can improve wound-healing uses.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Biomedicine and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26599/nbe.2023.9290039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Poor wound treatment impacts millions of humans worldwide, increasing deaths and costs. Wounds have three key complications: (a) a lack of an adequate environment for cell migration, proliferation, and angiogenesis; (b) microbial infection; and (c) unstable and prolonged inflammation.Regrettably, contemporary therapeutic treatments have not entirely tackled these basic difficulties and thus have insufficient medical accomplishment. The incorporation of the extraordinary capabilities of nanomaterials in wound healing has achieved major successes over the years. Nanomaterials can promote a variety of cellular and molecular processes that assist in the wound microenvironment through antibacterial, anti-inflammatory, and angiogenic activities, potentially shifting the surroundings from nonhealing to healing. The current review focuses on novel techniques, with a particular focus on recent revolutionary wound healing and infection control tactics based on nanomaterials, such as nanoparticles, nanocomposites, and scaffolds, which are discussed in depth. Furthermore, the effectiveness of nanoparticles as carriers for therapeutic compounds in wound-healing applications has been investigated which provide researchers an up-to-date sources on the use of nanomaterials and their creative ways that can improve wound-healing uses.