UAMP-based delay-Doppler channel estimation for OTFS systems

IF 3.1 3区 计算机科学 Q2 TELECOMMUNICATIONS China Communications Pub Date : 2023-10-01 DOI:10.23919/jcc.fa.2023-0067.202310
Zhongjie Li, Weijie Yuan, Qinghua Guo, Nan Wu, Ji Zhang
{"title":"UAMP-based delay-Doppler channel estimation for OTFS systems","authors":"Zhongjie Li, Weijie Yuan, Qinghua Guo, Nan Wu, Ji Zhang","doi":"10.23919/jcc.fa.2023-0067.202310","DOIUrl":null,"url":null,"abstract":"Orthogonal time frequency space (OTFS) technique, which modulates data symbols in the delay-Doppler (DD) domain, presents a potential solution for supporting reliable information transmission in high-mobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing (UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model (HMM). The empirical state evolution (SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm, we derive the update criterion for the hyperparameters through the expectation-maximization (EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"135 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/jcc.fa.2023-0067.202310","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Orthogonal time frequency space (OTFS) technique, which modulates data symbols in the delay-Doppler (DD) domain, presents a potential solution for supporting reliable information transmission in high-mobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing (UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model (HMM). The empirical state evolution (SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm, we derive the update criterion for the hyperparameters through the expectation-maximization (EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于uamp的OTFS系统延迟-多普勒信道估计
正交时频空间(OTFS)技术调制延迟多普勒(DD)域的数据符号,为支持高机动车辆网络中可靠的信息传输提供了一种潜在的解决方案。本文研究了分数多普勒存在下OTFS的DD信道估计问题。首先提出了一种基于统一近似消息传递(UAMP)的低复杂度和高精度信道估计算法,该算法利用隐马尔可夫模型(HMM)利用有效DD域信道的结构化稀疏性。然后利用经验状态演化(SE)分析来预测我们提出的算法的性能。为了改进算法中的超参数,我们通过期望最大化(EM)算法导出了超参数的更新准则。最后,我们的仿真结果表明,我们提出的算法可以在各种基线方案中获得显着的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
China Communications
China Communications 工程技术-电信学
CiteScore
8.00
自引率
12.20%
发文量
2868
审稿时长
8.6 months
期刊介绍: China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide. The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology. China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.
期刊最新文献
Secure short-packet transmission in uplink massive MU-MIMO assisted URLLC under imperfect CSI IoV and blockchain-enabled driving guidance strategy in complex traffic environment Multi-source underwater DOA estimation using PSO-BP neural network based on high-order cumulant optimization An overview of interactive immersive services Performance analysis in SWIPT-based bidirectional D2D communications in cellular networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1