Zhongjie Li, Weijie Yuan, Qinghua Guo, Nan Wu, Ji Zhang
{"title":"UAMP-based delay-Doppler channel estimation for OTFS systems","authors":"Zhongjie Li, Weijie Yuan, Qinghua Guo, Nan Wu, Ji Zhang","doi":"10.23919/jcc.fa.2023-0067.202310","DOIUrl":null,"url":null,"abstract":"Orthogonal time frequency space (OTFS) technique, which modulates data symbols in the delay-Doppler (DD) domain, presents a potential solution for supporting reliable information transmission in high-mobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing (UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model (HMM). The empirical state evolution (SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm, we derive the update criterion for the hyperparameters through the expectation-maximization (EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"135 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/jcc.fa.2023-0067.202310","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Orthogonal time frequency space (OTFS) technique, which modulates data symbols in the delay-Doppler (DD) domain, presents a potential solution for supporting reliable information transmission in high-mobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing (UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model (HMM). The empirical state evolution (SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm, we derive the update criterion for the hyperparameters through the expectation-maximization (EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.