Hongwu Tang, Yang Yu, Saiyu Yuan, Zhipeng Li, Hao Cao, Chenyu Jiang, Carlo Gualtieri
{"title":"Hydrodynamics and sediment transport in Poyang Lake under the effects of wind and backflow","authors":"Hongwu Tang, Yang Yu, Saiyu Yuan, Zhipeng Li, Hao Cao, Chenyu Jiang, Carlo Gualtieri","doi":"10.2166/nh.2023.191","DOIUrl":null,"url":null,"abstract":"Abstract The ecology of the aquatic environment in Poyang Lake, the largest fresh lake in China, is notably impacted by the backflow from the Yangtze River, which conveys a high flux of sediments. This study employs a widely recognized numerical model to replicate the backflow in 2007 (the strongest backflow after the operation initiation of the Three Gorges Dam) to investigate the contributions of wind and backflow to the sediment transport process. The results show that the influences of wind and backflow on flow patterns and sediment transport processes have significant spatial heterogeneity. In the narrow waterway leading to the central lake area, hydrodynamics is mainly driven by backflow. Conversely, the hydrodynamics of the open expanse of the lake is primarily influenced by wind forces. Dominant wind leads to the formation of gyres, which significantly alter flow paths and push sediment into the upstream areas. As a result, the suspended sediment area expands at an average rate of 20.1–21.3 km2 daily, marking a 75–85% surge compared to the no wind condition (11.5 km2). The study facilitates a deeper understanding of sediment transport processes in large lakes.","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"9 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/nh.2023.191","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The ecology of the aquatic environment in Poyang Lake, the largest fresh lake in China, is notably impacted by the backflow from the Yangtze River, which conveys a high flux of sediments. This study employs a widely recognized numerical model to replicate the backflow in 2007 (the strongest backflow after the operation initiation of the Three Gorges Dam) to investigate the contributions of wind and backflow to the sediment transport process. The results show that the influences of wind and backflow on flow patterns and sediment transport processes have significant spatial heterogeneity. In the narrow waterway leading to the central lake area, hydrodynamics is mainly driven by backflow. Conversely, the hydrodynamics of the open expanse of the lake is primarily influenced by wind forces. Dominant wind leads to the formation of gyres, which significantly alter flow paths and push sediment into the upstream areas. As a result, the suspended sediment area expands at an average rate of 20.1–21.3 km2 daily, marking a 75–85% surge compared to the no wind condition (11.5 km2). The study facilitates a deeper understanding of sediment transport processes in large lakes.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.