Recent Progress in Source/Drain Ohmic Contact with β-Ga2O3

Lin-Qing Zhang, Wan-Qing Miao, Xiao-Li Wu, Jing-Yi Ding, Shao-Yong Qin, Jia-Jia Liu, Ya-Ting Tian, Zhi-Yan Wu, Yan Zhang, Qian Xing, Peng-Fei Wang
{"title":"Recent Progress in Source/Drain Ohmic Contact with β-Ga2O3","authors":"Lin-Qing Zhang, Wan-Qing Miao, Xiao-Li Wu, Jing-Yi Ding, Shao-Yong Qin, Jia-Jia Liu, Ya-Ting Tian, Zhi-Yan Wu, Yan Zhang, Qian Xing, Peng-Fei Wang","doi":"10.3390/inorganics11100397","DOIUrl":null,"url":null,"abstract":"β-Ga2O3, with excellent bandgap, breakdown field, and thermal stability properties, is considered to be one of the most promising candidates for power devices including field-effect transistors (FETs) and for other applications such as Schottky barrier diodes (SBDs) and solar-blind ultraviolet photodetectors. Ohmic contact is one of the key steps in the β-Ga2O3 device fabrication process for power applications. Ohmic contact techniques have been developed in recent years, and they are summarized in this review. First, the basic theory of metal–semiconductor contact is introduced. After that, the representative literature related to Ohmic contact with β-Ga2O3 is summarized and analyzed, including the electrical properties, interface microstructure, Ohmic contact formation mechanism, and contact reliability. In addition, the promising alternative schemes, including novel annealing techniques and Au-free contact materials, which are compatible with the CMOS process, are discussed. This review will help our theoretical understanding of Ohmic contact in β-Ga2O3 devices as well as the development trends of Ohmic contact schemes.","PeriodicalId":13580,"journal":{"name":"Inorganics (Basel)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics (Basel)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inorganics11100397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

β-Ga2O3, with excellent bandgap, breakdown field, and thermal stability properties, is considered to be one of the most promising candidates for power devices including field-effect transistors (FETs) and for other applications such as Schottky barrier diodes (SBDs) and solar-blind ultraviolet photodetectors. Ohmic contact is one of the key steps in the β-Ga2O3 device fabrication process for power applications. Ohmic contact techniques have been developed in recent years, and they are summarized in this review. First, the basic theory of metal–semiconductor contact is introduced. After that, the representative literature related to Ohmic contact with β-Ga2O3 is summarized and analyzed, including the electrical properties, interface microstructure, Ohmic contact formation mechanism, and contact reliability. In addition, the promising alternative schemes, including novel annealing techniques and Au-free contact materials, which are compatible with the CMOS process, are discussed. This review will help our theoretical understanding of Ohmic contact in β-Ga2O3 devices as well as the development trends of Ohmic contact schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
β-Ga2O3源/漏欧姆接触研究进展
β-Ga2O3具有优异的带隙、击穿场和热稳定性,被认为是功率器件(包括场效应晶体管(fet))和其他应用(如肖特基势垒二极管(sdd)和太阳盲紫外光电探测器)最有前途的候选者之一。欧姆接触是大功率β-Ga2O3器件制造过程中的关键步骤之一。本文对近年来发展起来的欧姆接触技术进行了综述。首先,介绍了金属-半导体接触的基本理论。然后,对β-Ga2O3与欧姆接触相关的代表性文献进行了总结和分析,包括电学性能、界面微观结构、欧姆接触形成机理、接触可靠性等。此外,还讨论了有前途的替代方案,包括新的退火技术和与CMOS工艺兼容的无金触点材料。本文综述有助于我们对β-Ga2O3器件欧姆接触的理论认识以及欧姆接触方案的发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metal-Organic Cages Based on Phosphorescent Organometallics N-Based Polydentate Ligands and Corresponding Zn(II) Complexes: A Structural and Spectroscopic Study Thermochemistry, Structure, and Optical Properties of a Newβ-La2(SO4)3 Polymorphic Modification Synthesis, Characterization, and Impact of Water on the Stability of Postmodified Schiff Base Containing Metal–Organic Frameworks Structural Phase Transitions in the Double Salts (NH4)2PO3F·NH4NO3 and (NH4)2XO4·3NH4NO3 (X = Se, Cr)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1