Stretchable hybrid platform‐enabled interactive perception of strain sensing and visualization

SmartMat Pub Date : 2023-10-11 DOI:10.1002/smm2.1247
Yikun Liu, Yongju Gao, Beom Jin Kim, Meili Xia, Yunlong Zhou, Yongjing Zhang, Yang Li, Jianying Huang, Duxia Cao, Songfang Zhao, Jong‐Hyun Ahn, Yuekun Lai
{"title":"Stretchable hybrid platform‐enabled interactive perception of strain sensing and visualization","authors":"Yikun Liu, Yongju Gao, Beom Jin Kim, Meili Xia, Yunlong Zhou, Yongjing Zhang, Yang Li, Jianying Huang, Duxia Cao, Songfang Zhao, Jong‐Hyun Ahn, Yuekun Lai","doi":"10.1002/smm2.1247","DOIUrl":null,"url":null,"abstract":"Abstract Human–machine interactive platforms that can sense mechanical stimuli visually and digitally are highly desirable. However, most existing interactive devices cannot satisfy the demands of tactile feedback and extended integration. Inspired by the mechanoluminescence (ML) function of cephalopod skin and the sensitive perception of microcracked slit‐organs, a bioinspired stretchable interactive platform is developed by designing a stretchable poly(styrene‐block‐butadiene‐block‐styrene)/fluorescent molecule (SFM) composite followed by the in situ polymerization of pyrrole (Py) and deposition of carbon nanotubes (CNTs), which possesses a simple multilayered structure and quantitatively senses the applied strains via the variations of digital electrical resistance and visual fluorescence intensity. Using the strain‐dependent microstructures derived from the synergistic interactions of the rigid PPy/CNTs functional layer and SFM, the SFM/PPy/CNTs‐based platforms exhibit excellent strain‐sensing performance manifested by a high gauge factor (GF = 2.64 × 10 4 ), wide sensing range (~270%), fast response/recovery time (~155/195 ms), excellent stability (~15,000 cycles at 40% strain), and sensitive ML characteristics under ultraviolet illumination. Benefiting from the novel fusion of digital data and visual images, important applications, including the detection of wrist pulses and human motions, and information dual‐encryption, are demonstrated. This study demonstrates the superiority of advanced structures and materials for realizing superior applications in wearable electronics.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Human–machine interactive platforms that can sense mechanical stimuli visually and digitally are highly desirable. However, most existing interactive devices cannot satisfy the demands of tactile feedback and extended integration. Inspired by the mechanoluminescence (ML) function of cephalopod skin and the sensitive perception of microcracked slit‐organs, a bioinspired stretchable interactive platform is developed by designing a stretchable poly(styrene‐block‐butadiene‐block‐styrene)/fluorescent molecule (SFM) composite followed by the in situ polymerization of pyrrole (Py) and deposition of carbon nanotubes (CNTs), which possesses a simple multilayered structure and quantitatively senses the applied strains via the variations of digital electrical resistance and visual fluorescence intensity. Using the strain‐dependent microstructures derived from the synergistic interactions of the rigid PPy/CNTs functional layer and SFM, the SFM/PPy/CNTs‐based platforms exhibit excellent strain‐sensing performance manifested by a high gauge factor (GF = 2.64 × 10 4 ), wide sensing range (~270%), fast response/recovery time (~155/195 ms), excellent stability (~15,000 cycles at 40% strain), and sensitive ML characteristics under ultraviolet illumination. Benefiting from the novel fusion of digital data and visual images, important applications, including the detection of wrist pulses and human motions, and information dual‐encryption, are demonstrated. This study demonstrates the superiority of advanced structures and materials for realizing superior applications in wearable electronics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可拉伸混合平台-实现应变传感和可视化的交互式感知
能够直观和数字化地感知机械刺激的人机交互平台是人们迫切需要的。然而,现有的交互设备大多无法满足触觉反馈和扩展集成的需求。受头足类动物皮肤机械发光(ML)功能和微裂纹狭缝器官敏感感知的启发,通过设计可拉伸聚(苯乙烯-块-丁二烯-块-苯乙烯)/荧光分子(SFM)复合材料,然后进行吡咯(Py)的原位聚合和碳纳米管(CNTs)的沉积,开发了一个仿生可拉伸交互平台。它具有简单的多层结构,并通过数字电阻和视觉荧光强度的变化定量地感知施加的应变。利用刚性PPy/CNTs功能层与SFM协同作用产生的应变相关微观结构,SFM/PPy/CNTs基平台表现出优异的应变传感性能,表现为高测量因子(GF = 2.64 × 10.4)、宽传感范围(~270%)、快速响应/恢复时间(~155/195 ms)、优异的稳定性(在40%应变下~15,000次循环)以及在紫外线照射下敏感的ML特性。得益于数字数据和视觉图像的新型融合,展示了腕部脉冲和人体运动检测以及信息双重加密等重要应用。这项研究证明了先进的结构和材料在可穿戴电子产品中实现卓越应用的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chiral gypsum with high‐performance mechanical properties induced by self‐assembly of chiral amino acid on an amorphous mineral Electrolyte‐gated organic field‐effect transistors with high operational stability and lifetime in practical electrolytes Efforts of implementing ultra‐flexible thin‐film encapsulation for optoelectronic devices based on atomic layer deposition technology Flexible retinomorphic vision sensors with scotopic and photopic adaptation for a fully flexible neuromorphic machine vision system Coral‐inspired anti‐biofilm therapeutic abutments as a new paradigm for prevention and treatment of peri‐implant infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1