{"title":"A dimension reduction factor approach for multivariate time series with long-memory: a robust alternative method","authors":"Valdério Anselmo Reisen, Céline Lévy-Leduc, Edson Zambon Monte, Pascal Bondon","doi":"10.1007/s00362-023-01504-2","DOIUrl":null,"url":null,"abstract":"This paper studies factor modeling for a vector of time series with long-memory properties to investigate how outliers affect the identification of the number of factors and also proposes a robust method to reduce their impact. The number of factors is estimated using an eigenvalue analysis for a non-negative definite matrix introduced by Lam et al. (2011). Two estimators are proposed; the first is based on the classical sample covariance function, and the second uses a robust covariance function estimate. In both cases, it is shown that the eigenvalues estimates have similar convergence rates. Empirical simulations support both estimators for multivariate stationary long-memory time series and show that the robust method is preferable when the data is contaminated with additive outliers. Time series of daily log returns are used as an example of application. In addition to abrupt observations, exchange rates exhibit non-stationarity properties with long memory parameters greater than one. Then we use semi-parametric long memory estimators to estimate the fractional parameters of the series. The number of factors was estimated using the classical and robust approaches. Due to the influence of the abrupt observations, these tools suggested a different number of factors to model the data. The robust method suggested two factors, while the classical approach indicated only one factor.","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"1 6","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00362-023-01504-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies factor modeling for a vector of time series with long-memory properties to investigate how outliers affect the identification of the number of factors and also proposes a robust method to reduce their impact. The number of factors is estimated using an eigenvalue analysis for a non-negative definite matrix introduced by Lam et al. (2011). Two estimators are proposed; the first is based on the classical sample covariance function, and the second uses a robust covariance function estimate. In both cases, it is shown that the eigenvalues estimates have similar convergence rates. Empirical simulations support both estimators for multivariate stationary long-memory time series and show that the robust method is preferable when the data is contaminated with additive outliers. Time series of daily log returns are used as an example of application. In addition to abrupt observations, exchange rates exhibit non-stationarity properties with long memory parameters greater than one. Then we use semi-parametric long memory estimators to estimate the fractional parameters of the series. The number of factors was estimated using the classical and robust approaches. Due to the influence of the abrupt observations, these tools suggested a different number of factors to model the data. The robust method suggested two factors, while the classical approach indicated only one factor.
期刊介绍:
The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.