A Quantum Mechanical Description of Photosensitization in Photodynamic Therapy Using a Two-Electron Molecule Approximation

Vincent M Rossi
{"title":"A Quantum Mechanical Description of Photosensitization in Photodynamic Therapy Using a Two-Electron Molecule Approximation","authors":"Vincent M Rossi","doi":"10.1660/062.126.0104","DOIUrl":null,"url":null,"abstract":"A fundamental, Quantum Mechanical description of photoactivation of a generic photosensitizer (PS) and the ensuing transfer of energy to endogenous oxygen as part of the Type II pathway to photodamage during photodynamic therapy (PDT) is presented. The PS and molecular oxygen are approximated as two-electron molecules. Conservation of energy and of angular momenta of the two molecule system are abided via selection rules throughout the four-stage process, including initial states, absorption of a photon by the PS, conversion of the PS to an excited spin triplet via intersystem crossing (ISC), and the transition of molecular oxygen to an excited spin singlet state via a Triplet-Triplet Exchange of electrons with the PS. The provided description of photosensitization will provide students and researchers with a fundamental introduction to PDT, while offering the broader population of Quantum Mechanics and Physical Chemistry students an advanced example of quantum systems in an applied, medical context.","PeriodicalId":23234,"journal":{"name":"Transactions of the Kansas Academy of Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Kansas Academy of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1660/062.126.0104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A fundamental, Quantum Mechanical description of photoactivation of a generic photosensitizer (PS) and the ensuing transfer of energy to endogenous oxygen as part of the Type II pathway to photodamage during photodynamic therapy (PDT) is presented. The PS and molecular oxygen are approximated as two-electron molecules. Conservation of energy and of angular momenta of the two molecule system are abided via selection rules throughout the four-stage process, including initial states, absorption of a photon by the PS, conversion of the PS to an excited spin triplet via intersystem crossing (ISC), and the transition of molecular oxygen to an excited spin singlet state via a Triplet-Triplet Exchange of electrons with the PS. The provided description of photosensitization will provide students and researchers with a fundamental introduction to PDT, while offering the broader population of Quantum Mechanics and Physical Chemistry students an advanced example of quantum systems in an applied, medical context.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用双电子分子近似描述光动力治疗中光敏作用的量子力学描述
本文介绍了一种通用光敏剂(PS)的光激活和随后将能量传递给内源性氧的基本量子力学描述,这是光动力治疗(PDT)期间光损伤的II型途径的一部分。PS和氧分子近似为双电子分子。两个分子系统的能量守恒和角动量守恒通过选择规则在整个四阶段过程中得到遵守,包括初始态、光子被PS吸收、PS通过系统间交叉(ISC)转化为受激自旋三重态、以及通过与PS的三重电子交换将分子氧转变为激发态自旋单重态。所提供的光敏化描述将为学生和研究人员提供PDT的基本介绍,同时为量子力学和物理化学学生提供更广泛的量子系统在应用医学背景下的高级示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morphological Plasticity of Bluntnose Minnow Pimephales notatus from Pond and Stream Habitats Bison Act as Habitat Engineers for Large Branchiopod Crustaceans in the Great Plains Getting to the Root of the Newt: Larval Occurrence Patterns of a Newly Discovered Eastern Newt Population in Southeast Kansas The Influence of System Characteristics and Biotic Interactions on White Crappie Population Dynamics in Kansas Impoundments Abstracts from the 156th Annual Meeting of the Kansas Academy Science, Emporia State University, Emporia, Kansas, April 5-6, 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1