NON-QUALITY RISK EVALUATION FROM TOOL WEAR ASSESSMENT

IF 0.6 Q4 ENGINEERING, MECHANICAL MM Science Journal Pub Date : 2023-11-15 DOI:10.17973/mmsj.2023_11_2023113
F. Peysson, B. Doche, P. Lepetit, D. Leon, R. Hernansanz
{"title":"NON-QUALITY RISK EVALUATION FROM TOOL WEAR ASSESSMENT","authors":"F. Peysson, B. Doche, P. Lepetit, D. Leon, R. Hernansanz","doi":"10.17973/mmsj.2023_11_2023113","DOIUrl":null,"url":null,"abstract":"The development of part quality virtual sensors requires knowledge and observability of cutting conditions and in particular tool wear as tool are consumables. This paper presents an unsupervised anomalies detection approach to assess tool wear from standard machine load sensors in order to evaluate a non-quality risk metric. The developed methodology combines physics and business rules with density estimators to analyse the behaviour of axes and spindle loads. Industrial data from an automotive production line are used to illustrate the methodology application.","PeriodicalId":18723,"journal":{"name":"MM Science Journal","volume":"11 10","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MM Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17973/mmsj.2023_11_2023113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of part quality virtual sensors requires knowledge and observability of cutting conditions and in particular tool wear as tool are consumables. This paper presents an unsupervised anomalies detection approach to assess tool wear from standard machine load sensors in order to evaluate a non-quality risk metric. The developed methodology combines physics and business rules with density estimators to analyse the behaviour of axes and spindle loads. Industrial data from an automotive production line are used to illustrate the methodology application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
刀具磨损评价中的非质量风险评价
零件质量虚拟传感器的开发需要了解和观察切削条件,特别是刀具磨损,因为刀具是消耗品。本文提出了一种无监督异常检测方法,通过标准机器负载传感器来评估工具磨损,以评估非质量风险度量。所开发的方法将物理和业务规则与密度估计器相结合,以分析轴和主轴载荷的行为。以某汽车生产线的工业数据为例,说明了该方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MM Science Journal
MM Science Journal ENGINEERING, MECHANICAL-
CiteScore
1.30
自引率
42.90%
发文量
96
期刊最新文献
RECOGNITION OF OBJECT PROPERTIES BASED ON PASSIVE TRIANGULATION AND 2D CAMERA SYSTEM NON-MINIMUM PHASE SYSTEMS THE INTEGRATION OF HR INFORMATION SYSTEMS UTILIZATION IN INDUSTRIAL ENTERPRISES SUPPORTING MANUAL CONTOUR AND SURFACE PROCESSING WITH THE HELP OF AUGMENTED REALITY LINKING INFORMATION TECHNOLOGY TO THE DIGITAL ENTERPRISE PLATFORM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1