{"title":"Τopology Optimization under a Single Displacement Constraint Using a Strain Energy Criterion","authors":"Christopher G. Provatidis","doi":"10.3390/applmech4020031","DOIUrl":null,"url":null,"abstract":"Based on a previous concept that has been successfully applied to the sizing optimization of truss and frame structures, this work extends and improves the strain energy criterion in the topology optimization of 2D continuum structures under a single displacement constraint. To make the proposed methodology transparent to other researchers and at the same time meaningful, the numerical value of the displacement constraint was taken to be equal to that obtained through the well-known Solid Isotropic Material with Penalization (SIMP) method under the same boundary conditions and the same external forces. The proposed method is more efficient than the SIMP method while leading to topologies very close to those obtained by the latter.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"235 1","pages":"0"},"PeriodicalIF":12.2000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mechanics Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/applmech4020031","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on a previous concept that has been successfully applied to the sizing optimization of truss and frame structures, this work extends and improves the strain energy criterion in the topology optimization of 2D continuum structures under a single displacement constraint. To make the proposed methodology transparent to other researchers and at the same time meaningful, the numerical value of the displacement constraint was taken to be equal to that obtained through the well-known Solid Isotropic Material with Penalization (SIMP) method under the same boundary conditions and the same external forces. The proposed method is more efficient than the SIMP method while leading to topologies very close to those obtained by the latter.
期刊介绍:
Applied Mechanics Reviews (AMR) is an international review journal that serves as a premier venue for dissemination of material across all subdisciplines of applied mechanics and engineering science, including fluid and solid mechanics, heat transfer, dynamics and vibration, and applications.AMR provides an archival repository for state-of-the-art and retrospective survey articles and reviews of research areas and curricular developments. The journal invites commentary on research and education policy in different countries. The journal also invites original tutorial and educational material in applied mechanics targeting non-specialist audiences, including undergraduate and K-12 students.