Identification of wheat plant disease using hybrid model of pre-processing with CNN

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent & Fuzzy Systems Pub Date : 2023-10-28 DOI:10.3233/jifs-233672
R. Rajesh Kanna, V. Ulagamuthalvi
{"title":"Identification of wheat plant disease using hybrid model of pre-processing with CNN","authors":"R. Rajesh Kanna, V. Ulagamuthalvi","doi":"10.3233/jifs-233672","DOIUrl":null,"url":null,"abstract":"Diagnosis is given top priority in terms of farm resource allocation, because it directly affects the GDP of the country. Crop analysis at an early stage is important for verifying the efficient crop output. Computer vision has a number of intriguing and demanding concerns, including disease detection. After China, India is the world’s second-largest creator of wheat. However, there exist algorithms that can accurately identify the most prevalent illnesses of wheat leaves. To help farmers keep track on a large area of wheat plantation, leaf image and data processing techniques have recently been deployed extensively and in pricey systems. In this study, a hybrid pre-processing practice is used to remove undesired distortions while simultaneously enhancing the images. Fuzzy C-Means (FCM) is used to segment the affected areas from the pre-processed images. The data is then incorporated into a disease classification model using a Convolutional Neural Network (CNN). It was tested using Kaggle data and several metrics to see how efficient the suggested approach was. This study demonstrates that the traditional Long-Short Term Memory (LSTM) technique achieved 91.94% accuracy on the input images, but the hybrid pre-processing model with CNN achieved 95.06 percent accuracy.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"12 5","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-233672","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnosis is given top priority in terms of farm resource allocation, because it directly affects the GDP of the country. Crop analysis at an early stage is important for verifying the efficient crop output. Computer vision has a number of intriguing and demanding concerns, including disease detection. After China, India is the world’s second-largest creator of wheat. However, there exist algorithms that can accurately identify the most prevalent illnesses of wheat leaves. To help farmers keep track on a large area of wheat plantation, leaf image and data processing techniques have recently been deployed extensively and in pricey systems. In this study, a hybrid pre-processing practice is used to remove undesired distortions while simultaneously enhancing the images. Fuzzy C-Means (FCM) is used to segment the affected areas from the pre-processed images. The data is then incorporated into a disease classification model using a Convolutional Neural Network (CNN). It was tested using Kaggle data and several metrics to see how efficient the suggested approach was. This study demonstrates that the traditional Long-Short Term Memory (LSTM) technique achieved 91.94% accuracy on the input images, but the hybrid pre-processing model with CNN achieved 95.06 percent accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预处理与CNN混合模型的小麦病害识别
在农业资源配置方面,诊断是重中之重,因为它直接影响到国家的GDP。作物早期分析对于验证作物的有效产量至关重要。计算机视觉有许多有趣和苛刻的问题,包括疾病检测。印度是仅次于中国的世界第二大小麦生产国。然而,现有的算法可以准确地识别小麦叶片最常见的疾病。为了帮助农民跟踪大面积的小麦种植,叶片图像和数据处理技术最近被广泛应用于昂贵的系统中。在本研究中,混合预处理实践用于消除不希望的失真,同时增强图像。使用模糊c均值(FCM)从预处理图像中分割出受影响的区域。然后使用卷积神经网络(CNN)将数据合并到疾病分类模型中。使用Kaggle数据和几个指标对其进行了测试,以了解所建议的方法的效率。研究表明,传统的长短期记忆(LSTM)技术对输入图像的准确率达到91.94%,而与CNN混合预处理模型的准确率达到95.06%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent & Fuzzy Systems
Journal of Intelligent & Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
3.40
自引率
10.00%
发文量
965
审稿时长
5.1 months
期刊介绍: The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
期刊最新文献
Systematic review and meta-analysis of the screening and identification of key genes in gastric cancer using DNA microarray database DBSCAN-based energy users clustering for performance enhancement of deep learning model Implementation of a dynamic planning algorithm in accounting information technology administration Robust multi-frequency band joint dictionary learning with low-rank representation Investigation on distributed scheduling with lot-streaming considering setup time based on NSGA-II in a furniture intelligent manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1