Construction of a Class of Real Array Rank Distance Codes

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Electrical and Computer Engineering Pub Date : 2023-10-28 DOI:10.1155/2023/9952813
N. Suresh Babu, B. Ravivarma, E. M. Elsayed, K. G. Sreekumar
{"title":"Construction of a Class of Real Array Rank Distance Codes","authors":"N. Suresh Babu, B. Ravivarma, E. M. Elsayed, K. G. Sreekumar","doi":"10.1155/2023/9952813","DOIUrl":null,"url":null,"abstract":"Rank distance codes are known to be applicable in various applications such as distributed data storage, cryptography, space time coding, and mainly in network coding. Rank distance codes defined over finite fields have attracted considerable attention in recent years. However, in some scenarios where codes over finite fields are not sufficient, it is demonstrated that codes defined over the real number field are preferred. In this paper, we proposed a new class of rank distance codes over the real number field <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mi mathvariant=\"double-struck\">R</mi> </math> . The real array rank distance (RARD) codes we constructed here can be used for all the applications mentioned above whenever the code alphabet is the real field <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mi mathvariant=\"double-struck\">R</mi> </math> . From the class of RARD codes, we extract a subclass of equidistant constant rank codes which is applicable in network coding. Also, we determined an upper bound for the dimension of RARD codes leading the way to obtain some optimal RARD codes. Moreover, we established examples of some RARD codes and optimal RARD codes.","PeriodicalId":46573,"journal":{"name":"Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9952813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Rank distance codes are known to be applicable in various applications such as distributed data storage, cryptography, space time coding, and mainly in network coding. Rank distance codes defined over finite fields have attracted considerable attention in recent years. However, in some scenarios where codes over finite fields are not sufficient, it is demonstrated that codes defined over the real number field are preferred. In this paper, we proposed a new class of rank distance codes over the real number field R . The real array rank distance (RARD) codes we constructed here can be used for all the applications mentioned above whenever the code alphabet is the real field R . From the class of RARD codes, we extract a subclass of equidistant constant rank codes which is applicable in network coding. Also, we determined an upper bound for the dimension of RARD codes leading the way to obtain some optimal RARD codes. Moreover, we established examples of some RARD codes and optimal RARD codes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类实数阵列秩距离码的构造
Rank距离码被广泛应用于分布式数据存储、密码学、空时编码等领域,主要应用于网络编码。在有限域上定义的秩距离码近年来引起了广泛的关注。然而,在有限域上的代码不够的情况下,证明了在实数域上定义的代码是首选的。本文提出了实数域R上的一类新的秩距离码。我们在这里构造的实数组秩距离(RARD)代码可以用于上面提到的所有应用程序,只要代码字母表是实字段R。从RARD码类中,我们提取了一个适用于网络编码的等距常秩码子类。此外,我们还确定了RARD码维数的上界,从而得到了一些最优的RARD码。此外,我们还建立了一些RARD码和最优RARD码的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electrical and Computer Engineering
Journal of Electrical and Computer Engineering COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.20
自引率
0.00%
发文量
152
审稿时长
19 weeks
期刊最新文献
Network Intrusion Detection Using Knapsack Optimization, Mutual Information Gain, and Machine Learning Electronically Tunable Grounded and Floating Capacitance Multipliers Using a Single Active Element A Novel Technique for Facial Recognition Based on the GSO-CNN Deep Learning Algorithm Simulation Analysis of Arc-Quenching Performance of Eco-Friendly Insulating Gas Mixture of CF3I and CO2 under Impulse Arc Balancing Data Privacy and 5G VNFs Security Monitoring: Federated Learning with CNN + BiLSTM + LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1