Similarity-sequenced multi-view discriminant feature extraction for image recognition

IF 1.2 4区 物理与天体物理 Q4 OPTICS Journal of Modern Optics Pub Date : 2023-10-28 DOI:10.1080/09500340.2023.2273552
Shuzhi Su, Kaiyu Zhang, Yanmin Zhu, Maoyan Zhang, Shexiang Jiang
{"title":"Similarity-sequenced multi-view discriminant feature extraction for image recognition","authors":"Shuzhi Su, Kaiyu Zhang, Yanmin Zhu, Maoyan Zhang, Shexiang Jiang","doi":"10.1080/09500340.2023.2273552","DOIUrl":null,"url":null,"abstract":"Traditional multi-view feature extraction methods based on manifold learning frequently overlook the similarity sequence between samples, failing to capture the intrinsic manifold structure of raw nonlinear samples and restricting the recognition performance of multi-view learning. In this paper, we propose a novel similarity-sequenced multi-view discriminant feature extraction method, called Similarity -sequenced Multi-view Discriminant Correlation Analysis (SMDCA), which explicitly considers the sample sequences based on similarity. The method constructs similarity-sequenced discriminant scatters for preserving the sequence structure of within-class samples and develops between-class correlations with the similarity-sequence structure information for further constraining intrinsic manifold structure of cross-view samples. SMDCA can also simultaneously extract low-dimensional sequence features with well-discriminative power from multiple views. Extensive experiments exhibit that SMDCA can provide higher recognition accuracy and stronger robustness in image recognition tasks.","PeriodicalId":16426,"journal":{"name":"Journal of Modern Optics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09500340.2023.2273552","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional multi-view feature extraction methods based on manifold learning frequently overlook the similarity sequence between samples, failing to capture the intrinsic manifold structure of raw nonlinear samples and restricting the recognition performance of multi-view learning. In this paper, we propose a novel similarity-sequenced multi-view discriminant feature extraction method, called Similarity -sequenced Multi-view Discriminant Correlation Analysis (SMDCA), which explicitly considers the sample sequences based on similarity. The method constructs similarity-sequenced discriminant scatters for preserving the sequence structure of within-class samples and develops between-class correlations with the similarity-sequence structure information for further constraining intrinsic manifold structure of cross-view samples. SMDCA can also simultaneously extract low-dimensional sequence features with well-discriminative power from multiple views. Extensive experiments exhibit that SMDCA can provide higher recognition accuracy and stronger robustness in image recognition tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相似性序列的图像识别多视图判别特征提取
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Modern Optics
Journal of Modern Optics 物理-光学
CiteScore
2.90
自引率
0.00%
发文量
90
审稿时长
2.6 months
期刊介绍: The journal (under its former title Optica Acta) was founded in 1953 - some years before the advent of the laser - as an international journal of optics. Since then optical research has changed greatly; fresh areas of inquiry have been explored, different techniques have been employed and the range of application has greatly increased. The journal has continued to reflect these advances as part of its steadily widening scope. Journal of Modern Optics aims to publish original and timely contributions to optical knowledge from educational institutions, government establishments and industrial R&D groups world-wide. The whole field of classical and quantum optics is covered. Papers may deal with the applications of fundamentals of modern optics, considering both experimental and theoretical aspects of contemporary research. In addition to regular papers, there are topical and tutorial reviews, and special issues on highlighted areas. All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. General topics covered include: • Optical and photonic materials (inc. metamaterials) • Plasmonics and nanophotonics • Quantum optics (inc. quantum information) • Optical instrumentation and technology (inc. detectors, metrology, sensors, lasers) • Coherence, propagation, polarization and manipulation (classical optics) • Scattering and holography (diffractive optics) • Optical fibres and optical communications (inc. integrated optics, amplifiers) • Vision science and applications • Medical and biomedical optics • Nonlinear and ultrafast optics (inc. harmonic generation, multiphoton spectroscopy) • Imaging and Image processing
期刊最新文献
Multimode interferometers: an analytical method for determining the accumulated phase difference between the fundamental mode and one arbitrary high-order mode An efficient image encryption scheme integrating chaotic keystream generator with S-box and triangular block scrambling Sensing analysis of self-mixing and Michelson interferometry with neural-network-based phase extraction Dual-band terahertz metamaterials with electromagnetically induced transparency-like enabling high-performance sensing The eigenstates of PT-symmetric coupled system with self-defocusing Kerr-nonlinearity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1