Khuganeshwaran Mogan, Ridhwan Jumaidin, Rushdan Ahmad Ilyas, Zatil Hafila Kamaruddin
{"title":"Environmental Properties of Coconut Fiber/Reinforced Thermoplastic Starch/Beeswax Hybrid Composites","authors":"Khuganeshwaran Mogan, Ridhwan Jumaidin, Rushdan Ahmad Ilyas, Zatil Hafila Kamaruddin","doi":"10.47836/pjst.31.s1.02","DOIUrl":null,"url":null,"abstract":"The creation of degradable biocomposites is anticipated to alleviate the challenges of worldwide environmental contamination and resource exhaustion. The study investigates the effect of coconut fiber on the environmental properties and water affinity behavior of thermoplastic starch/beeswax composite. The biocomposites were fabricated by incorporating the coconut husk fiber range from 10 to 50 wt%. The thermoplastic starch contains cassava starch, glycerol, and beeswax. The modification of the mixture became efficient when the mixing was determined to be stronger when used as a high-pace blender to aid the mixing process. The mixture then underwent a hot compression molding method to form the mixture into the desired sample form. We can conclude from the results that samples with high fiber content absorb less water than those with no fiber content. For moisture absorption, when the fiber content increases, the ability of the fiber to moisture absorption is decreased. The thickness swelling results show that the sample shows less swelling as the fiber percentage increases. For the soil burial test, incorporating 50 wt% coconut fiber decreases the weight reduction for 4 weeks. For the water solubility test, the solubility of 50 wt% is the best. Based on the findings, integrating coconut fiber into the modified thermoplastic cassava starch increases the composite properties relative to the non-reinforcement matrix material starch.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.31.s1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The creation of degradable biocomposites is anticipated to alleviate the challenges of worldwide environmental contamination and resource exhaustion. The study investigates the effect of coconut fiber on the environmental properties and water affinity behavior of thermoplastic starch/beeswax composite. The biocomposites were fabricated by incorporating the coconut husk fiber range from 10 to 50 wt%. The thermoplastic starch contains cassava starch, glycerol, and beeswax. The modification of the mixture became efficient when the mixing was determined to be stronger when used as a high-pace blender to aid the mixing process. The mixture then underwent a hot compression molding method to form the mixture into the desired sample form. We can conclude from the results that samples with high fiber content absorb less water than those with no fiber content. For moisture absorption, when the fiber content increases, the ability of the fiber to moisture absorption is decreased. The thickness swelling results show that the sample shows less swelling as the fiber percentage increases. For the soil burial test, incorporating 50 wt% coconut fiber decreases the weight reduction for 4 weeks. For the water solubility test, the solubility of 50 wt% is the best. Based on the findings, integrating coconut fiber into the modified thermoplastic cassava starch increases the composite properties relative to the non-reinforcement matrix material starch.
期刊介绍:
Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.