Feng Zhou, Xin Du, WenLi Li, Zhihui Lu, Shih-Chia Huang
{"title":"Fidan: a predictive service demand model for assisting nursing home health-care robots","authors":"Feng Zhou, Xin Du, WenLi Li, Zhihui Lu, Shih-Chia Huang","doi":"10.1080/09540091.2023.2267791","DOIUrl":null,"url":null,"abstract":"While population aging has sharply increased the demand for nursing staff, it has also increased the workload of nursing staff. Although some nursing homes use robots to perform part of the work, such robots are the type of robots that perform set tasks. The requirements in actual application scenarios often change, so robots that perform set tasks cannot effectively reduce the workload of nursing staff. In order to provide practical help to nursing staff in nursing homes, we innovatively combine the LightGBM algorithm with the machine learning interpretation framework SHAP (Shapley Additive exPlanations) and use comprehensive data analysis methods to propose a service demand prediction model Fidan (Forecast service demand model). This model analyzes and predicts the demand for elderly services in nursing homes based on relevant health management data (including physiological and sleep data), ward round data, and nursing service data collected by IoT devices. We optimise the model parameters based on Grid Search during the training process. The experimental results show that the Fidan model has an accuracy rate of 86.61% in predicting the demand for elderly services.","PeriodicalId":50629,"journal":{"name":"Connection Science","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connection Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09540091.2023.2267791","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
While population aging has sharply increased the demand for nursing staff, it has also increased the workload of nursing staff. Although some nursing homes use robots to perform part of the work, such robots are the type of robots that perform set tasks. The requirements in actual application scenarios often change, so robots that perform set tasks cannot effectively reduce the workload of nursing staff. In order to provide practical help to nursing staff in nursing homes, we innovatively combine the LightGBM algorithm with the machine learning interpretation framework SHAP (Shapley Additive exPlanations) and use comprehensive data analysis methods to propose a service demand prediction model Fidan (Forecast service demand model). This model analyzes and predicts the demand for elderly services in nursing homes based on relevant health management data (including physiological and sleep data), ward round data, and nursing service data collected by IoT devices. We optimise the model parameters based on Grid Search during the training process. The experimental results show that the Fidan model has an accuracy rate of 86.61% in predicting the demand for elderly services.
期刊介绍:
Connection Science is an interdisciplinary journal dedicated to exploring the convergence of the analytic and synthetic sciences, including neuroscience, computational modelling, artificial intelligence, machine learning, deep learning, Database, Big Data, quantum computing, Blockchain, Zero-Knowledge, Internet of Things, Cybersecurity, and parallel and distributed computing.
A strong focus is on the articles arising from connectionist, probabilistic, dynamical, or evolutionary approaches in aspects of Computer Science, applied applications, and systems-level computational subjects that seek to understand models in science and engineering.