Wall heat flux in supersonic turbulent expansion flow with shock impingement

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Turbulence Pub Date : 2023-09-21 DOI:10.1080/14685248.2023.2260777
Fulin Tong, Junyi Duan, Xianxu Yuan, Xinliang Li
{"title":"Wall heat flux in supersonic turbulent expansion flow with shock impingement","authors":"Fulin Tong, Junyi Duan, Xianxu Yuan, Xinliang Li","doi":"10.1080/14685248.2023.2260777","DOIUrl":null,"url":null,"abstract":"AbstractWe perform direct numerical simulations to investigate the characteristics of wall heat flux (WHF) in the interaction of an oblique shock wave at an angle of 33.2° and free-stream Mach number M∞ = 2.25 impinging on supersonic turbulent expansion corners with deflection angles of 0o (flat plate), 6o and 12o. The effect of the expansion on the WHF characteristics is analysed by comparing it to the interaction with the flat plate under the same flow conditions and a fixed shock impingement point. In the post-expansion region, the decreased mean WHF is found to collapse onto the flat plate case when scaled with the mean wall pressure. The statistical properties of the WHF fluctuations, including probability density function, frequency spectra, and space–time correlations, are comparatively analysed. The expansion causes an increase in the occurrence probability of negative extreme events, an enhancement of high-frequency energy, and an inhibition of intermediate-frequency energy. The increased expansion angle also results in a faster recovery of characteristic spanwise length scales and an increase in convection velocity. We use the mean WHF decomposition method in conjunction with bidimensional empirical mode decomposition to quantitatively analyse the impact of expansion on scale contributions. It is demonstrated that the presence of the expansion corner has no significant impact on the decomposed results, but it significantly reduces the contribution associated with outer large-scale structures.KEYWORDS: Expansion cornerturbulent boundary layershock impingementwall heat flux Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis study was co-supported by the National Key R&D Program of China (No. 2019YFA0405300) and the National Natural Science Foundation of China (No. 11972356).","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14685248.2023.2260777","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractWe perform direct numerical simulations to investigate the characteristics of wall heat flux (WHF) in the interaction of an oblique shock wave at an angle of 33.2° and free-stream Mach number M∞ = 2.25 impinging on supersonic turbulent expansion corners with deflection angles of 0o (flat plate), 6o and 12o. The effect of the expansion on the WHF characteristics is analysed by comparing it to the interaction with the flat plate under the same flow conditions and a fixed shock impingement point. In the post-expansion region, the decreased mean WHF is found to collapse onto the flat plate case when scaled with the mean wall pressure. The statistical properties of the WHF fluctuations, including probability density function, frequency spectra, and space–time correlations, are comparatively analysed. The expansion causes an increase in the occurrence probability of negative extreme events, an enhancement of high-frequency energy, and an inhibition of intermediate-frequency energy. The increased expansion angle also results in a faster recovery of characteristic spanwise length scales and an increase in convection velocity. We use the mean WHF decomposition method in conjunction with bidimensional empirical mode decomposition to quantitatively analyse the impact of expansion on scale contributions. It is demonstrated that the presence of the expansion corner has no significant impact on the decomposed results, but it significantly reduces the contribution associated with outer large-scale structures.KEYWORDS: Expansion cornerturbulent boundary layershock impingementwall heat flux Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis study was co-supported by the National Key R&D Program of China (No. 2019YFA0405300) and the National Natural Science Foundation of China (No. 11972356).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激波冲击下超音速湍流膨胀流的壁面热流密度
摘要采用直接数值模拟的方法,研究了33.2°斜激波在自由流马赫数M∞= 2.25的情况下,在偏转角为0(平板)、60和120的超声速湍流膨胀角相互作用下的壁面热流密度特性。通过与固定冲击点和相同流量条件下与平板的相互作用对比,分析了膨胀对激波流特性的影响。在膨胀后区域,随着平均壁面压力的缩放,发现减小的平均WHF坍塌到平板壳上。比较分析了WHF波动的统计性质,包括概率密度函数、频谱和时空相关性。膨胀导致负极端事件发生概率增加,高频能量增强,中频能量抑制。膨胀角的增大也导致了特征展向长度尺度的更快恢复和对流速度的增加。我们使用平均WHF分解方法结合二维经验模态分解来定量分析扩展对尺度贡献的影响。结果表明,膨胀角的存在对分解结果没有显著影响,但显著降低了与外部大型结构相关的分解贡献。关键词:膨胀角湍流边界层激波冲击壁热流披露声明作者未报告潜在利益冲突。本研究由国家重点研发计划项目(No. 2019YFA0405300)和国家自然科学基金项目(No. 11972356)共同资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Turbulence
Journal of Turbulence 物理-力学
CiteScore
3.90
自引率
5.30%
发文量
23
审稿时长
6-12 weeks
期刊介绍: Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence. JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.
期刊最新文献
A comparative study of bandpass-filter-based multi-scale methods for turbulence energy cascade On the physical structure, modelling and computation-based prediction of two-dimensional, smooth-wall turbulent boundary layers subjected to streamwise pressure gradients Large-eddy simulation of shock train in convergent-divergent nozzles with isothermal walls Uniform momentum zones in turbulent channel flow Transient energy transfer and cascade analysis for stratified turbulent channel flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1