A comprehensive review on fly ash-based geopolymer: a pathway for sustainable future

IF 4.7 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Sustainable Cement-Based Materials Pub Date : 2023-09-21 DOI:10.1080/21650373.2023.2258122
Govind Gaurav, Shreesh Chandra Kandpal, Deepika Mishra, Needhi Kotoky
{"title":"A comprehensive review on fly ash-based geopolymer: a pathway for sustainable future","authors":"Govind Gaurav, Shreesh Chandra Kandpal, Deepika Mishra, Needhi Kotoky","doi":"10.1080/21650373.2023.2258122","DOIUrl":null,"url":null,"abstract":"AbstractCement production is energy-intensive resulting in the emission of carbon dioxide (CO2) which is responsible for global warming. Rapid surge in the global energy demands needs to pave way for the need for a viable and sustainable alternative to concrete, which not only reduces our dependence on natural resources but also can be a possible alternative to the concrete industry and geopolymer technology can be one such material. Geopolymer technology can use secondary raw materials from the agricultural and industrial waste with alumina-silicate phase in presence of alkali activator for the production of geopolymer concrete. This paper comprehensively summarizes the previous research; along with analysis is carried out to propose descriptive equations to establish the correlation between the mechanical strengths (Compressive strength with Split tensile strength, Flexural strength and Modulus of Elasticity) of geopolymer. Current findings suggest substantial practicality and a possible alternative to cement in the construction industryKeywords: geopolymerfly ashcementconcretestrengthdurability Disclosure statementThere is no conflict of interest regarding the publication of the paper.","PeriodicalId":48521,"journal":{"name":"Journal of Sustainable Cement-Based Materials","volume":"81 1","pages":"0"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Cement-Based Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21650373.2023.2258122","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractCement production is energy-intensive resulting in the emission of carbon dioxide (CO2) which is responsible for global warming. Rapid surge in the global energy demands needs to pave way for the need for a viable and sustainable alternative to concrete, which not only reduces our dependence on natural resources but also can be a possible alternative to the concrete industry and geopolymer technology can be one such material. Geopolymer technology can use secondary raw materials from the agricultural and industrial waste with alumina-silicate phase in presence of alkali activator for the production of geopolymer concrete. This paper comprehensively summarizes the previous research; along with analysis is carried out to propose descriptive equations to establish the correlation between the mechanical strengths (Compressive strength with Split tensile strength, Flexural strength and Modulus of Elasticity) of geopolymer. Current findings suggest substantial practicality and a possible alternative to cement in the construction industryKeywords: geopolymerfly ashcementconcretestrengthdurability Disclosure statementThere is no conflict of interest regarding the publication of the paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粉煤灰基地聚合物:可持续发展之路综述
摘要水泥生产是能源密集型产业,其产生的二氧化碳是造成全球变暖的罪魁祸首。全球能源需求的快速增长需要为混凝土的可行和可持续替代品铺平道路,这不仅可以减少我们对自然资源的依赖,而且还可以成为混凝土工业的可能替代品,地聚合物技术就是这样一种材料。地聚合物技术是利用具有硅酸铝相的农业和工业废弃物中的二次原料,在碱性活化剂的存在下生产地聚合物混凝土。本文全面总结了前人的研究成果;并对地聚合物的力学强度(抗压强度与劈裂抗拉强度、抗折强度和弹性模量)进行了分析,提出了描述性方程,建立了它们之间的相关性。目前的研究结果表明,在建筑行业中具有很大的实用性和水泥的可能替代品。关键词:地聚合物粉煤灰水泥混凝土强度耐久性披露声明发表该论文不存在利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
15.90%
发文量
71
期刊介绍: The Journal of Sustainable Cement-Based Materials aims to publish theoretical and applied researches on materials, products and structures that incorporate cement. The journal is a forum for discussion of research on manufacture, hydration and performance of cement-based materials; novel experimental techniques; the latest analytical and modelling methods; the examination and the diagnosis of real cement and concrete structures; and the potential for improved cement-based materials. The journal welcomes original research papers, major reviews, rapid communications and selected conference papers. The Journal of Sustainable Cement-Based Materials covers a wide range of topics within its subject category, including but are not limited to: • raw materials and manufacture of cement • mixing, rheology and hydration • admixtures • structural characteristics and performance of cement-based materials • characterisation techniques and modeling • use of fibre in cement based-materials • degradation and repair of cement-based materials • novel testing techniques and applications • waste management
期刊最新文献
Preparation of high flexural strength rankinite cement benefiting from formation of aragonite whisker during carbonation curing Hydration mechanism and mechanical properties of a developed low-carbon and lightweight strain-hardening cementitious composites Development and characterization of volume-stabilized grouts used for borehole heat exchangers Piezoresistive performance of self-sensing cement-based composites filled with multi-layer graphene Mechanical and microstructural properties of structural and non-structural lightweight foamed concrete with coal bottom ash as cement and sand replacement material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1