Michael V. Klibanov, Jingzhi Li, Loc H. Nguyen, Vladimir Romanov, Zhipeng Yang
{"title":"Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation","authors":"Michael V. Klibanov, Jingzhi Li, Loc H. Nguyen, Vladimir Romanov, Zhipeng Yang","doi":"10.1137/23m1565449","DOIUrl":null,"url":null,"abstract":"The first globally convergent numerical method for a coefficient inverse problem for the Riemannian radiative transfer equation (RRTE) is constructed. This is a version of the so-called convexification method, which has been pursued by this research group for a number of years for some other CIPs for PDEs. Those PDEs are significantly different from the RRTE. The presence of the Carleman weight function in the numerical scheme is the key element which insures the global convergence. Convergence analysis is presented along with the results of numerical experiments, which confirm the theory. RRTE governs the propagation of photons in the diffuse medium in the case when they propagate along geodesic lines between their collisions. Geodesic lines are generated by the spatially variable dielectric constant of the medium.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23m1565449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
The first globally convergent numerical method for a coefficient inverse problem for the Riemannian radiative transfer equation (RRTE) is constructed. This is a version of the so-called convexification method, which has been pursued by this research group for a number of years for some other CIPs for PDEs. Those PDEs are significantly different from the RRTE. The presence of the Carleman weight function in the numerical scheme is the key element which insures the global convergence. Convergence analysis is presented along with the results of numerical experiments, which confirm the theory. RRTE governs the propagation of photons in the diffuse medium in the case when they propagate along geodesic lines between their collisions. Geodesic lines are generated by the spatially variable dielectric constant of the medium.