3D solid of SARS-CoV-2 viral particles applied Legendre polynomials from Tomography Fourier analysis

Jesús Arriaga Hernández, Bolivia Otahola, María Morín Castillo, Jose Oliveros
{"title":"3D solid of SARS-CoV-2 viral particles applied Legendre polynomials from Tomography Fourier analysis","authors":"Jesús Arriaga Hernández, Bolivia Otahola, María Morín Castillo, Jose Oliveros","doi":"10.1364/josaa.498859","DOIUrl":null,"url":null,"abstract":"We show the construction of 3D solids (volumetric 3D models) of SARS-CoV-2 viral particles from the tomographic studies (videos) of SARS-CoV-2-infected tissues. To this aim, we propose a video analysis (tomographic images) by frames (medical images of the virus), which we set as our metadata. We optimize the frames by means of Fourier analysis, which induces a periodicity with simple structure patterns to minimize noise filtering and to obtain an optimal phase of the objects in the image, focusing on the SARS-CoV-2 cells to obtain a medical image under study phase (MIS) (process repeated over all frames). We build a Python algorithm based on Legendre polynomials called “2DLegendre_Fit,” which generates (using multilinear interpolation) intermediate images between neighboring MIS phases. We used this code to generate m images of size M × M , resulting in a matrix with size M × M × M (3D solid). Finally, we show the 3D solid of the SARS-CoV-2 viral particle as part of our results in several videos, subsequently rotated and filtered to identify the glicoprotein spike protein, membrane protein, envelope, and the hemagglutinin esterase. We show the algorithms in our proposal along with the main MATLAB functions such as FourierM and Results as well as the data required for the program execution in order to reproduce our results.","PeriodicalId":17413,"journal":{"name":"Journal of the Optical Society of America","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josaa.498859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show the construction of 3D solids (volumetric 3D models) of SARS-CoV-2 viral particles from the tomographic studies (videos) of SARS-CoV-2-infected tissues. To this aim, we propose a video analysis (tomographic images) by frames (medical images of the virus), which we set as our metadata. We optimize the frames by means of Fourier analysis, which induces a periodicity with simple structure patterns to minimize noise filtering and to obtain an optimal phase of the objects in the image, focusing on the SARS-CoV-2 cells to obtain a medical image under study phase (MIS) (process repeated over all frames). We build a Python algorithm based on Legendre polynomials called “2DLegendre_Fit,” which generates (using multilinear interpolation) intermediate images between neighboring MIS phases. We used this code to generate m images of size M × M , resulting in a matrix with size M × M × M (3D solid). Finally, we show the 3D solid of the SARS-CoV-2 viral particle as part of our results in several videos, subsequently rotated and filtered to identify the glicoprotein spike protein, membrane protein, envelope, and the hemagglutinin esterase. We show the algorithms in our proposal along with the main MATLAB functions such as FourierM and Results as well as the data required for the program execution in order to reproduce our results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用层析傅里叶分析的勒让德多项式对SARS-CoV-2病毒颗粒的三维固体
我们展示了从SARS-CoV-2感染组织的断层扫描研究(视频)中构建的SARS-CoV-2病毒颗粒的3D固体(体积3D模型)。为此,我们建议按帧(病毒的医学图像)进行视频分析(断层图像),并将其设置为元数据。我们通过傅里叶分析优化帧,该分析通过简单的结构模式诱导周期性以最小化噪声滤波并获得图像中物体的最佳相位,重点关注SARS-CoV-2细胞以获得研究阶段(MIS)下的医学图像(在所有帧上重复此过程)。我们构建了一个基于Legendre多项式的Python算法,称为“2DLegendre_Fit”,它在相邻的MIS阶段之间生成(使用多线性插值)中间图像。我们使用此代码生成m张大小为m × m的图像,得到大小为m × m × m的矩阵(3D实体)。最后,我们在几个视频中展示了SARS-CoV-2病毒颗粒的3D固体,作为我们结果的一部分,随后旋转和过滤以识别糖蛋白刺突蛋白,膜蛋白,包膜和血凝素酯酶。我们在我们的提案中展示了算法以及主要的MATLAB函数,如FourierM和Results,以及程序执行所需的数据,以便重现我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: OSA was published by The Optical Society from January 1917 to December 1983 before dividing into JOSA A: Optics and Image Science and JOSA B: Optical Physics in 1984.
期刊最新文献
Viewpoint-dependent highlight depiction with microdisparity for autostereoscopic display Optimal Data Acquisition In Tomography Photoacoustic image reconstruction with a new objective function using TGV and ESTGV as a regularization parameter. Color Image Guided Depth Image Reconstruction Based on Total Variation Network 2π ambiguity-free digital holography method for stepped phase imaging:Erratum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1