{"title":"<i>F-LSTM</i>: Federated learning-based LSTM framework for cryptocurrency price prediction","authors":"Nihar Patel, Nakul Vasani, Nilesh Kumar Jadav, Rajesh Gupta, Sudeep Tanwar, Zdzislaw Polkowski, Fayez Alqahtani, Amr Gafar","doi":"10.3934/era.2023330","DOIUrl":null,"url":null,"abstract":"<abstract><p>In this paper, a distributed machine-learning strategy, i.e., federated learning (FL), is used to enable the artificial intelligence (AI) model to be trained on dispersed data sources. The paper is specifically meant to forecast cryptocurrency prices, where a long short-term memory (LSTM)-based FL network is used. The proposed framework, i.e., <italic>F-LSTM</italic> utilizes FL, due to which different devices are trained on distributed databases that protect the user privacy. Sensitive data is protected by staying private and secure by sharing only model parameters (weights) with the central server. To assess the effectiveness of <italic>F-LSTM</italic>, we ran different empirical simulations. Our findings demonstrate that <italic>F-LSTM</italic> outperforms conventional approaches and machine learning techniques by achieving a loss minimal of $ 2.3 \\times 10^{-4} $. Furthermore, the <italic>F-LSTM</italic> uses substantially less memory and roughly half the CPU compared to a solely centralized approach. In comparison to a centralized model, the <italic>F-LSTM</italic> requires significantly less time for training and computing. The use of both FL and LSTM networks is responsible for the higher performance of our suggested model (<italic>F-LSTM</italic>). In terms of data privacy and accuracy, <italic>F-LSTM</italic> addresses the shortcomings of conventional approaches and machine learning models, and it has the potential to transform the field of cryptocurrency price prediction.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"1 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2023330","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a distributed machine-learning strategy, i.e., federated learning (FL), is used to enable the artificial intelligence (AI) model to be trained on dispersed data sources. The paper is specifically meant to forecast cryptocurrency prices, where a long short-term memory (LSTM)-based FL network is used. The proposed framework, i.e., F-LSTM utilizes FL, due to which different devices are trained on distributed databases that protect the user privacy. Sensitive data is protected by staying private and secure by sharing only model parameters (weights) with the central server. To assess the effectiveness of F-LSTM, we ran different empirical simulations. Our findings demonstrate that F-LSTM outperforms conventional approaches and machine learning techniques by achieving a loss minimal of $ 2.3 \times 10^{-4} $. Furthermore, the F-LSTM uses substantially less memory and roughly half the CPU compared to a solely centralized approach. In comparison to a centralized model, the F-LSTM requires significantly less time for training and computing. The use of both FL and LSTM networks is responsible for the higher performance of our suggested model (F-LSTM). In terms of data privacy and accuracy, F-LSTM addresses the shortcomings of conventional approaches and machine learning models, and it has the potential to transform the field of cryptocurrency price prediction.