Beatriz Nunes Silva, Nathália Fernandes, Laís Carvalho, Ana Sofia Faria, José António Teixeira, Carina Rodrigues, Ursula Gonzales-Barron, Vasco Cadavez
{"title":"Lactic acid bacteria from artisanal raw goat milk cheeses: technological properties and antimicrobial potential","authors":"Beatriz Nunes Silva, Nathália Fernandes, Laís Carvalho, Ana Sofia Faria, José António Teixeira, Carina Rodrigues, Ursula Gonzales-Barron, Vasco Cadavez","doi":"10.4081/ijfs.2023.11559","DOIUrl":null,"url":null,"abstract":"In cheese-making, a starter culture composed of adequately chosen lactic acid bacteria (LAB) may be suitable to ensure the rapid acidification of milk, improve textural and sensorial characteristics, and avoid pathogen proliferation. In this work, 232 LAB isolates collected from artisanal goat’s raw milk cheeses produced in Portugal were evaluated for their antimicrobial capacity (at 10 and 37°C), as well as their acidifying and proteolytic properties. Among the 232 isolates, at least 98% of those isolated in De Man-Rogosa-Sharpe (MRS) agar presented antagonism against Listeria monocytogenes, Salmonella Typhimurium, or Staphylococcus aureus, whereas less than 28.1% of M17-isolated LAB showed antagonism against these pathogens. M17-isolated LAB displayed better results than MRS ones in terms of acidifying capacity. As for the proteolytic assay, only two MRS isolates showed casein hydrolysis capacity. Principal component analyses and molecular characterization of a subset of selected isolates were conducted to identify those with promising capacities and to correlate the identified LAB genera and species with their antimicrobial, acidifying, and/or proteolytic properties. Lactococcus strains were associated with the highest acidifying capacity, whereas Leuconostoc and Lacticaseibacillus strains were more related to antimicrobial capacities. Leuconostoc mesenteroides, Lactococcus lactis, and Lacticaseibacillus paracasei were the predominant organisms found. The results of this work highlight various strains with pathogen inhibition capacity and suitable technological properties to be included in a customized starter culture. As future work, it is necessary to appropriately define the starter culture and implement it in the cheese-making process to evaluate if the in-vitro capacities are observable in a real food system.","PeriodicalId":14508,"journal":{"name":"Italian Journal of Food Safety","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Food Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/ijfs.2023.11559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In cheese-making, a starter culture composed of adequately chosen lactic acid bacteria (LAB) may be suitable to ensure the rapid acidification of milk, improve textural and sensorial characteristics, and avoid pathogen proliferation. In this work, 232 LAB isolates collected from artisanal goat’s raw milk cheeses produced in Portugal were evaluated for their antimicrobial capacity (at 10 and 37°C), as well as their acidifying and proteolytic properties. Among the 232 isolates, at least 98% of those isolated in De Man-Rogosa-Sharpe (MRS) agar presented antagonism against Listeria monocytogenes, Salmonella Typhimurium, or Staphylococcus aureus, whereas less than 28.1% of M17-isolated LAB showed antagonism against these pathogens. M17-isolated LAB displayed better results than MRS ones in terms of acidifying capacity. As for the proteolytic assay, only two MRS isolates showed casein hydrolysis capacity. Principal component analyses and molecular characterization of a subset of selected isolates were conducted to identify those with promising capacities and to correlate the identified LAB genera and species with their antimicrobial, acidifying, and/or proteolytic properties. Lactococcus strains were associated with the highest acidifying capacity, whereas Leuconostoc and Lacticaseibacillus strains were more related to antimicrobial capacities. Leuconostoc mesenteroides, Lactococcus lactis, and Lacticaseibacillus paracasei were the predominant organisms found. The results of this work highlight various strains with pathogen inhibition capacity and suitable technological properties to be included in a customized starter culture. As future work, it is necessary to appropriately define the starter culture and implement it in the cheese-making process to evaluate if the in-vitro capacities are observable in a real food system.
期刊介绍:
The Journal of Food Safety (IJFS) is the official journal of the Italian Association of Veterinary Food Hygienists (AIVI). The Journal addresses veterinary food hygienists, specialists in the food industry and experts offering technical support and advice on food of animal origin. The Journal of Food Safety publishes original research papers concerning food safety and hygiene, animal health, zoonoses and food safety, food safety economics. Reviews, editorials, technical reports, brief notes, conference proceedings, letters to the Editor, book reviews are also welcome. Every article published in the Journal will be peer-reviewed by experts in the field and selected by members of the editorial board. The publication of manuscripts is subject to the approval of the Editor who has knowledge of the field discussed in the manuscript in accordance with the principles of Peer Review; referees will be selected from the Editorial Board or among qualified scientists of the international scientific community. Articles must be written in English and must adhere to the guidelines and details contained in the Instructions to Authors.