{"title":"On a time-changed variant of the generalized counting process","authors":"M. Khandakar, K. K. Kataria","doi":"10.1017/jpr.2023.70","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we time-change the generalized counting process (GCP) by an independent inverse mixed stable subordinator to obtain a fractional version of the GCP. We call it the mixed fractional counting process (MFCP). The system of fractional differential equations that governs its state probabilities is obtained using the Z transform method. Its one-dimensional distribution, mean, variance, covariance, probability generating function, and factorial moments are obtained. It is shown that the MFCP exhibits the long-range dependence property whereas its increment process has the short-range dependence property. As an application we consider a risk process in which the claims are modelled using the MFCP. For this risk process, we obtain an asymptotic behaviour of its finite-time ruin probability when the claim sizes are subexponentially distributed and the initial capital is arbitrarily large. Later, we discuss some distributional properties of a compound version of the GCP.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"26 6","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jpr.2023.70","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we time-change the generalized counting process (GCP) by an independent inverse mixed stable subordinator to obtain a fractional version of the GCP. We call it the mixed fractional counting process (MFCP). The system of fractional differential equations that governs its state probabilities is obtained using the Z transform method. Its one-dimensional distribution, mean, variance, covariance, probability generating function, and factorial moments are obtained. It is shown that the MFCP exhibits the long-range dependence property whereas its increment process has the short-range dependence property. As an application we consider a risk process in which the claims are modelled using the MFCP. For this risk process, we obtain an asymptotic behaviour of its finite-time ruin probability when the claim sizes are subexponentially distributed and the initial capital is arbitrarily large. Later, we discuss some distributional properties of a compound version of the GCP.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.