{"title":"Phase Transition, Thermal Expansion and Electrical Properties of BNLT-BT Ceramics Near the Morphotropic Phase Boundary","authors":"Pornpis Kongputhon, Puripat Kantha, Muangjai Unruan, Panupong Jaiban, Ruyan Guo, Amar S. Bhalla, Kamonpan Pengpat, Pinit Kidkhunthod, Pawin Iamprasertkun, Chakrit Nualchimplee, Anek Charoenphakdee, Tawee Tunkasiri, Nuttapon Pisitpipathsin","doi":"10.1080/10584587.2023.2234625","DOIUrl":null,"url":null,"abstract":"AbstractLead-free ceramics based on bismuth sodium lanthanum titanate (Bi0.4871Na0.4871La0.0172TiO3: BNLT) and barium titanate (BaTiO3: BT) were prepared by a modified two-step mixed-oxide method. Effects of BT content on the phase transition, thermal expansion behavior, mechanical and electrical properties of lead-free BNLT-BT ceramics were studied. The Burn’s temperature and local polarizations were estimated from the thermal expansion data. Various aspects of understanding the polarization behavior and other effects in this system have also been investigated and discussed. The 0.96BNLT-0.04BT ceramics have shown the d33 value of 135 pC/N. The coercive field (Ec) and remanent polarization (Pr) were found to be 24 kV/cm and 9.0 µC/cm2, respectively. This may be useful in the future development of multifunctional lead-free materials in electronic applications.Keywords: Thermal expansiondielectric propertiesferroelectric propertieselectrical properties AcknowledgmentsThe authors would like to thank the Faculty of Science, Chiang Mai University, Department of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Thailand for financial support. N. Pisitpipathsin also appreciated the support from the Thailand Research Fund (TRF) (TRG6280011) and Synchrotron Light Research Institute (Public Organization), Nakorn Ratchasima, Thailand. Also, the UTSA acknowledges the support of NSF/INAMM grant #0844081.Disclosure StatementNo potential conflict of interest was reported by the author(s).","PeriodicalId":13686,"journal":{"name":"Integrated Ferroelectrics","volume":"33 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10584587.2023.2234625","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractLead-free ceramics based on bismuth sodium lanthanum titanate (Bi0.4871Na0.4871La0.0172TiO3: BNLT) and barium titanate (BaTiO3: BT) were prepared by a modified two-step mixed-oxide method. Effects of BT content on the phase transition, thermal expansion behavior, mechanical and electrical properties of lead-free BNLT-BT ceramics were studied. The Burn’s temperature and local polarizations were estimated from the thermal expansion data. Various aspects of understanding the polarization behavior and other effects in this system have also been investigated and discussed. The 0.96BNLT-0.04BT ceramics have shown the d33 value of 135 pC/N. The coercive field (Ec) and remanent polarization (Pr) were found to be 24 kV/cm and 9.0 µC/cm2, respectively. This may be useful in the future development of multifunctional lead-free materials in electronic applications.Keywords: Thermal expansiondielectric propertiesferroelectric propertieselectrical properties AcknowledgmentsThe authors would like to thank the Faculty of Science, Chiang Mai University, Department of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Thailand for financial support. N. Pisitpipathsin also appreciated the support from the Thailand Research Fund (TRF) (TRG6280011) and Synchrotron Light Research Institute (Public Organization), Nakorn Ratchasima, Thailand. Also, the UTSA acknowledges the support of NSF/INAMM grant #0844081.Disclosure StatementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Integrated Ferroelectrics provides an international, interdisciplinary forum for electronic engineers and physicists as well as process and systems engineers, ceramicists, and chemists who are involved in research, design, development, manufacturing and utilization of integrated ferroelectric devices. Such devices unite ferroelectric films and semiconductor integrated circuit chips. The result is a new family of electronic devices, which combine the unique nonvolatile memory, pyroelectric, piezoelectric, photorefractive, radiation-hard, acoustic and/or dielectric properties of ferroelectric materials with the dynamic memory, logic and/or amplification properties and miniaturization and low-cost advantages of semiconductor i.c. technology.