The use of artificial intelligence to detect defects in building structures

Natal'ya Knyazeva, Evgenij Nazojkin, Aleksej Orekhov
{"title":"The use of artificial intelligence to detect defects in building structures","authors":"Natal'ya Knyazeva, Evgenij Nazojkin, Aleksej Orekhov","doi":"10.29039/2308-0191-2023-11-3-18-18","DOIUrl":null,"url":null,"abstract":"Monitoring the technical condition of structures is the most important task aimed at improving the reliability and safety of buildings and structures. During the survey, a set of tasks arises to assess visible defects and damages, the solution of which requires the experience and attention of structural survey specialists. Often the omission of visible defects is the most common mistake when examining the engineering and technical condition of a building. Technical vision, as a method of classifying objects in images, can significantly improve the efficiency of visual inspection and reduce the number of errors on the object. In this paper, an algorithm for detecting damage to reinforced concrete structures based on a convolutional neural network model created in the Python programming language is investigated. The neural network was trained and tested on real defects of a monolithic reinforced concrete building. According to the results of the work, the high efficiency of artificial intelligence in determining defects and damages in the framework of the survey of the engineering and technical condition of monolithic reinforced concrete structures of a building under construction was revealed. Automation of works on visual inspection of building structures is a promising direction for the development of artificial intelligence.","PeriodicalId":32716,"journal":{"name":"Academia Arkhitektura i stroitel''stvo","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academia Arkhitektura i stroitel''stvo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29039/2308-0191-2023-11-3-18-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring the technical condition of structures is the most important task aimed at improving the reliability and safety of buildings and structures. During the survey, a set of tasks arises to assess visible defects and damages, the solution of which requires the experience and attention of structural survey specialists. Often the omission of visible defects is the most common mistake when examining the engineering and technical condition of a building. Technical vision, as a method of classifying objects in images, can significantly improve the efficiency of visual inspection and reduce the number of errors on the object. In this paper, an algorithm for detecting damage to reinforced concrete structures based on a convolutional neural network model created in the Python programming language is investigated. The neural network was trained and tested on real defects of a monolithic reinforced concrete building. According to the results of the work, the high efficiency of artificial intelligence in determining defects and damages in the framework of the survey of the engineering and technical condition of monolithic reinforced concrete structures of a building under construction was revealed. Automation of works on visual inspection of building structures is a promising direction for the development of artificial intelligence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工智能来检测建筑结构的缺陷
监测结构的技术状况是提高建筑物和结构的可靠性和安全性的最重要的任务。在调查过程中,出现了一系列任务来评估可见的缺陷和损坏,解决这些问题需要结构调查专家的经验和注意力。在检查建筑物的工程和技术条件时,经常遗漏可见缺陷是最常见的错误。技术视觉作为一种对图像中物体进行分类的方法,可以显著提高视觉检测的效率,减少对物体的错误次数。本文研究了一种基于卷积神经网络模型的钢筋混凝土结构损伤检测算法。对该神经网络进行了训练,并对某钢筋混凝土整体结构的实际缺陷进行了测试。根据工作结果,揭示了人工智能在某在建建筑整体钢筋混凝土结构工程技术状况调查中识别框架缺陷和损伤的高效性。建筑结构目视检测工作的自动化是人工智能发展的一个有前途的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
43
审稿时长
10 weeks
期刊最新文献
Ноты христианской античности в архитектуре православного храма: от романтизма XIX к «постсовременности» XXI века Инженерно-сейсмометрический мониторинг для расчета конструкций, прогноза сейсмостойкости и обеспечения сохранности гражданских объектов при эксплуатации Моделирование притока тепла от солнечной радиации через решеточные смарт-окна Тератогенез в архитектуре Руина как текст
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1