SEP Optimization of Power System Location and Timing Module Based on MLE-KNN Synthesis Algorithm

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Advanced Computational Intelligence and Intelligent Informatics Pub Date : 2023-09-20 DOI:10.20965/jaciii.2023.p0812
Yawei Xu, Wei Wang, Jia Zhou, Zhihua Zhu, Changzheng Yao
{"title":"SEP Optimization of Power System Location and Timing Module Based on MLE-KNN Synthesis Algorithm","authors":"Yawei Xu, Wei Wang, Jia Zhou, Zhihua Zhu, Changzheng Yao","doi":"10.20965/jaciii.2023.p0812","DOIUrl":null,"url":null,"abstract":"To ensure the safe operation of the power system, it is necessary to monitor and manage all kinds of power facilities. Real-time power monitoring can play a role in the early warning of geographical disasters. At the transmission end, the state detection and fault location of transmission lines are related to the normal operation of the power system. The precise time synchronization of the power system can be guaranteed through the satellite positioning time service, so that the time of various power operation actions is consistent. The accuracy can reach several microseconds, which provides a basis for the analysis of power grid operation. In this paper, by installing BeiDou functional modules in power equipment and developing the BeiDou operation platform for the distribution network, the precise management of power timing and positioning is realized by docking with the geographic information systems platform of the power grid. The three-dimensional sphere error probability (SEP) algorithm is selected to evaluate the positioning error data. Based on the three traditional SEP calculation methods, the maximum likelihood estimation algorithm is optimized and improved, which can achieve nanosecond synchronization accuracy. It can also be applied to other precision of synchronization scenarios of the power system to meet the development needs of the future clock system of the power system. Through the simulation of experimental data and comparison with other algorithms, the accuracy is verified and the reliable estimation of parameters is realized. Considering the information loss caused by dimension reduction evaluation, the simulation analysis in this paper is compared with other methods, and the accuracy is significantly improved. The power system positioning and timing module developed in this paper can not only be used in the power system but also has a certain reference and application value for other devices in the same industry that need timing and positioning services.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"14 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure the safe operation of the power system, it is necessary to monitor and manage all kinds of power facilities. Real-time power monitoring can play a role in the early warning of geographical disasters. At the transmission end, the state detection and fault location of transmission lines are related to the normal operation of the power system. The precise time synchronization of the power system can be guaranteed through the satellite positioning time service, so that the time of various power operation actions is consistent. The accuracy can reach several microseconds, which provides a basis for the analysis of power grid operation. In this paper, by installing BeiDou functional modules in power equipment and developing the BeiDou operation platform for the distribution network, the precise management of power timing and positioning is realized by docking with the geographic information systems platform of the power grid. The three-dimensional sphere error probability (SEP) algorithm is selected to evaluate the positioning error data. Based on the three traditional SEP calculation methods, the maximum likelihood estimation algorithm is optimized and improved, which can achieve nanosecond synchronization accuracy. It can also be applied to other precision of synchronization scenarios of the power system to meet the development needs of the future clock system of the power system. Through the simulation of experimental data and comparison with other algorithms, the accuracy is verified and the reliable estimation of parameters is realized. Considering the information loss caused by dimension reduction evaluation, the simulation analysis in this paper is compared with other methods, and the accuracy is significantly improved. The power system positioning and timing module developed in this paper can not only be used in the power system but also has a certain reference and application value for other devices in the same industry that need timing and positioning services.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MLE-KNN综合算法的电力系统定位与定时模块SEP优化
为了保证电力系统的安全运行,必须对各类电力设施进行监控和管理。电力实时监测可以起到地理灾害预警的作用。在输电端,输电线路的状态检测和故障定位关系到电力系统的正常运行。通过卫星定位授时服务,可以保证电力系统的精确时间同步,使各电力运行动作的时间一致。精度可达几微秒,为电网运行分析提供了依据。本文通过在电力设备中安装北斗功能模块,开发配电网北斗运行平台,与电网地理信息系统平台对接,实现电力定时定位的精准管理。采用三维球面误差概率(SEP)算法对定位误差数据进行评价。在三种传统SEP计算方法的基础上,对最大似然估计算法进行了优化和改进,实现了纳秒级同步精度。也可应用于电力系统的其他精度同步场景,以满足未来电力系统时钟系统的发展需求。通过对实验数据的仿真和与其他算法的比较,验证了算法的准确性,实现了参数的可靠估计。考虑到降维评估带来的信息损失,本文的仿真分析与其他方法进行了对比,精度得到了显著提高。本文开发的电力系统定位与定时模块不仅可以在电力系统中使用,而且对同行业中其他需要定时定位服务的设备具有一定的参考和应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
期刊最新文献
The Impact of Individual Heterogeneity on Household Asset Choice: An Empirical Study Based on China Family Panel Studies Private Placement, Investor Sentiment, and Stock Price Anomaly Does Increasing Public Service Expenditure Slow the Long-Term Economic Growth Rate?—Evidence from China Prediction and Characteristic Analysis of Enterprise Digital Transformation Integrating XGBoost and SHAP Industrial Chain Map and Linkage Network Characteristics of Digital Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1