{"title":"Evaluating plate discipline in Major League Baseball with Bayesian Additive Regression Trees","authors":"Ryan Yee, Sameer K. Deshpande","doi":"10.1515/jqas-2023-0048","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a three-step framework to determine at which pitches Major League batters should swing. Unlike traditional plate discipline metrics, which implicitly assume that all batters should always swing at (resp. take) pitches inside (resp. outside) the strike zone, our approach explicitly accounts not only for the players and umpires involved in the pitch but also in-game contextual information like the number of outs, the count, baserunners, and score. We first fit flexible Bayesian nonparametric models to estimate (i) the probability that the pitch is called a strike if the batter takes the pitch; (ii) the probability that the batter makes contact if he swings; and (iii) the number of runs the batting team is expected to score following each pitch outcome (e.g. swing and miss, take a called strike, etc.). We then combine these intermediate estimates to determine whether swinging increases the batting team’s run expectancy. Our approach enables natural uncertainty propagation so that we can not only determine the optimal swing/take decision but also quantify our confidence in that decision. We illustrate our framework using a case study of pitches faced by Mike Trout in 2019.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"24 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2023-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We introduce a three-step framework to determine at which pitches Major League batters should swing. Unlike traditional plate discipline metrics, which implicitly assume that all batters should always swing at (resp. take) pitches inside (resp. outside) the strike zone, our approach explicitly accounts not only for the players and umpires involved in the pitch but also in-game contextual information like the number of outs, the count, baserunners, and score. We first fit flexible Bayesian nonparametric models to estimate (i) the probability that the pitch is called a strike if the batter takes the pitch; (ii) the probability that the batter makes contact if he swings; and (iii) the number of runs the batting team is expected to score following each pitch outcome (e.g. swing and miss, take a called strike, etc.). We then combine these intermediate estimates to determine whether swinging increases the batting team’s run expectancy. Our approach enables natural uncertainty propagation so that we can not only determine the optimal swing/take decision but also quantify our confidence in that decision. We illustrate our framework using a case study of pitches faced by Mike Trout in 2019.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.