Umair Maqsood, Saif Ur Rehman, Tariq Ali, Khalid Mahmood, Tahani Alsaedi, Mahwish Kundi
{"title":"An Intelligent Framework Based on Deep Learning for SMS and e-mail Spam Detection","authors":"Umair Maqsood, Saif Ur Rehman, Tariq Ali, Khalid Mahmood, Tahani Alsaedi, Mahwish Kundi","doi":"10.1155/2023/6648970","DOIUrl":null,"url":null,"abstract":"The use of short message service (SMS) and e-mail have increased too much over the last decades. 80% of people do not read e-mails while 98% of cell phone users daily read their SMS. However, these communication media are unsafe and can produce malicious attacks called spam. The e-mails that pretend to be from a trusted company to provide “financial or personal information” are phishing e-mails. These e-mails contain some links; users might download malicious software on their computers when they click on them. Most techniques and models are developed to automatically detect these “SMS and e-mails” but none of them achieved 100% accuracy. In previous studies using machine learning (ML), spam detection using a small dataset has resulted in lower accuracy. To counter this problem, in this paper, multiple classifiers of ML and a classifier of deep learning (DL) were applied to the SMS and e-mail dataset for spam detection with higher accuracy. After conducting experiments on the real dataset, the researchers concluded that the proposed system performed better and more accurately than previously existing models. Specifically, the support vector machine (SVM) classifier outperformed all others. These results suggest that SVM is the optimal choice for classification purposes.","PeriodicalId":44894,"journal":{"name":"Applied Computational Intelligence and Soft Computing","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Intelligence and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6648970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The use of short message service (SMS) and e-mail have increased too much over the last decades. 80% of people do not read e-mails while 98% of cell phone users daily read their SMS. However, these communication media are unsafe and can produce malicious attacks called spam. The e-mails that pretend to be from a trusted company to provide “financial or personal information” are phishing e-mails. These e-mails contain some links; users might download malicious software on their computers when they click on them. Most techniques and models are developed to automatically detect these “SMS and e-mails” but none of them achieved 100% accuracy. In previous studies using machine learning (ML), spam detection using a small dataset has resulted in lower accuracy. To counter this problem, in this paper, multiple classifiers of ML and a classifier of deep learning (DL) were applied to the SMS and e-mail dataset for spam detection with higher accuracy. After conducting experiments on the real dataset, the researchers concluded that the proposed system performed better and more accurately than previously existing models. Specifically, the support vector machine (SVM) classifier outperformed all others. These results suggest that SVM is the optimal choice for classification purposes.
期刊介绍:
Applied Computational Intelligence and Soft Computing will focus on the disciplines of computer science, engineering, and mathematics. The scope of the journal includes developing applications related to all aspects of natural and social sciences by employing the technologies of computational intelligence and soft computing. The new applications of using computational intelligence and soft computing are still in development. Although computational intelligence and soft computing are established fields, the new applications of using computational intelligence and soft computing can be regarded as an emerging field, which is the focus of this journal.