An anisotropy honeycomb structure with reinforced deformability and stiffness

IF 2.9 3区 工程技术 Q2 MECHANICS International Journal of Applied Mechanics Pub Date : 2023-09-30 DOI:10.1142/s1758825124500066
Ning Feng, Shangbin Wang, Yuanhao Tie, Andras Biczo, Chongfu Huang, Weibo Xie
{"title":"An anisotropy honeycomb structure with reinforced deformability and stiffness","authors":"Ning Feng, Shangbin Wang, Yuanhao Tie, Andras Biczo, Chongfu Huang, Weibo Xie","doi":"10.1142/s1758825124500066","DOIUrl":null,"url":null,"abstract":"In this work, by breaking the structural six-fold symmetry and isotropy, we propose a simple design to drastically improve the elastic deformability and stiffness of gardenia-shaped honeycomb (GSH) structures, with a lower structural relative density. In the developed structural design, the enhancement of the mechanical response is achieved by locally shortening the beams that caused the intracellular extrusion. Studies that focused on simultaneously strengthening the two above-mentioned characteristics are rarely seen. Unlike the isotropy of the previous GSH structures, the elastic modulus of the reinforced GSH (RGSH) structures in both two principal directions is investigated via performing a complete parametric study. To visualize the utterly different mechanical response between the GSH and RGSH structures, the elastic properties-comparison are presented theoretically, numerically, and experimentally. The developed structural reinforcing method, combining the stiffness and deformability regulation, provides a valuable way to redesign multifunctional lattice structures for meeting the various requirements regarding mechanical characteristics.","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":"22 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1758825124500066","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, by breaking the structural six-fold symmetry and isotropy, we propose a simple design to drastically improve the elastic deformability and stiffness of gardenia-shaped honeycomb (GSH) structures, with a lower structural relative density. In the developed structural design, the enhancement of the mechanical response is achieved by locally shortening the beams that caused the intracellular extrusion. Studies that focused on simultaneously strengthening the two above-mentioned characteristics are rarely seen. Unlike the isotropy of the previous GSH structures, the elastic modulus of the reinforced GSH (RGSH) structures in both two principal directions is investigated via performing a complete parametric study. To visualize the utterly different mechanical response between the GSH and RGSH structures, the elastic properties-comparison are presented theoretically, numerically, and experimentally. The developed structural reinforcing method, combining the stiffness and deformability regulation, provides a valuable way to redesign multifunctional lattice structures for meeting the various requirements regarding mechanical characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有增强变形能力和刚度的各向异性蜂窝结构
在这项工作中,我们通过打破结构的六重对称和各向同性,提出了一种简单的设计,以较低的结构相对密度大幅提高栀子形蜂窝(GSH)结构的弹性变形能力和刚度。在发达的结构设计中,通过局部缩短引起胞内挤压的梁来增强机械响应。同时加强上述两种特征的研究很少。与以往GSH结构的各向同性不同,增强GSH (RGSH)结构在两个主要方向上的弹性模量是通过进行完整的参数研究来研究的。为了可视化GSH和RGSH结构之间完全不同的力学响应,在理论上、数值上和实验上进行了弹性性能比较。所提出的结合刚度和变形性调节的结构加固方法,为多功能点阵结构的重新设计提供了一条有价值的途径,以满足各种力学特性的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
11.40%
发文量
116
审稿时长
3 months
期刊介绍: The journal has as its objective the publication and wide electronic dissemination of innovative and consequential research in applied mechanics. IJAM welcomes high-quality original research papers in all aspects of applied mechanics from contributors throughout the world. The journal aims to promote the international exchange of new knowledge and recent development information in all aspects of applied mechanics. In addition to covering the classical branches of applied mechanics, namely solid mechanics, fluid mechanics, thermodynamics, and material science, the journal also encourages contributions from newly emerging areas such as biomechanics, electromechanics, the mechanical behavior of advanced materials, nanomechanics, and many other inter-disciplinary research areas in which the concepts of applied mechanics are extensively applied and developed.
期刊最新文献
Deep Learning Accelerated Design of Bézier Curve-Based Cellular Metamaterials with Target Properties A Multi-Time-Step Parallel Computing Method based on Overlapping Particles for DEM A Frictionless Normal Contact Model for Flattening Elastoplastic Single Asperity Considering Yield Plateau and Strain Hardening Application of Convolutional Networks for Localization and Prediction of Scalar Parameters of Fractured Geological Inclusion An Indentation Method for Determining the Elastic Modulus, Hardness and Film Thickness of a Tri-Layer Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1