{"title":"Imaging a Moving Point Source from Multifrequency Data Measured at One and Sparse Observation Directions (Part I): Far-Field Case","authors":"Hongxia Guo, Guanghui Hu, Guanqiu Ma","doi":"10.1137/23m1545045","DOIUrl":null,"url":null,"abstract":"We propose a multifrequency algorithm for recovering partial information on the trajectory of a moving point source from one and sparse far-field observation directions in the frequency domain. The starting and terminal time points of the moving source are both supposed to be known. We introduce the concept of observable directions (angles) in the far-field region and derive all observable directions (angles) for straight and circular motions. The existence of nonobservable directions makes this paper much different from inverse stationary source problems. At an observable direction, it is verified that the smallest strip containing the trajectory and perpendicular to the direction can be imaged, provided the angle between the observation direction and the velocity vector of the moving source lies in . If otherwise, one can only expect to recover a strip thinner than this smallest strip for straight and circular motions. The far-field data measured at sparse observable directions can be used to recover the -convex domain of the trajectory. Both two- and three-dimensional numerical examples are implemented to show effectiveness and feasibility of the approach.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"42 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23m1545045","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a multifrequency algorithm for recovering partial information on the trajectory of a moving point source from one and sparse far-field observation directions in the frequency domain. The starting and terminal time points of the moving source are both supposed to be known. We introduce the concept of observable directions (angles) in the far-field region and derive all observable directions (angles) for straight and circular motions. The existence of nonobservable directions makes this paper much different from inverse stationary source problems. At an observable direction, it is verified that the smallest strip containing the trajectory and perpendicular to the direction can be imaged, provided the angle between the observation direction and the velocity vector of the moving source lies in . If otherwise, one can only expect to recover a strip thinner than this smallest strip for straight and circular motions. The far-field data measured at sparse observable directions can be used to recover the -convex domain of the trajectory. Both two- and three-dimensional numerical examples are implemented to show effectiveness and feasibility of the approach.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.