Jinqu Chen, Chengzhen Jiang, Xiaowei Liu, Bo Du, Qiyuan Peng, Yong Yin, Baowen Li
{"title":"Resilience Enhancement of an Urban Rail Transit Network by Setting Turn-Back Tracks: A Scenario Model Approach","authors":"Jinqu Chen, Chengzhen Jiang, Xiaowei Liu, Bo Du, Qiyuan Peng, Yong Yin, Baowen Li","doi":"10.1177/03611981231203157","DOIUrl":null,"url":null,"abstract":"The resilience of an urban rail transit (URT) network when faced with disruptions is affected by the locations of stations equipped with turn-back (TB) tracks. However, limited studies have enhanced the resilience of a URT network by setting new TB tracks. The present work addresses this gap by proposing and solving a scenario model for improving the operation of a URT network under normal conditions and disruptions by considering uncertain disruptions. A solution algorithm combined with the non-dominated sorting genetic algorithm-II is proposed to solve the model. Numerical experiments conducted on the Chengdu subway system indicate that the resilience of a URT network is significantly affected by TB operations provided at stations equipped with TB tracks. Compared with a network without new TB tracks, the matching degree between passenger flow spatial distribution and TB convenience, and the network’s overall resilience metric (NORM) are improved by 12.05% and 0.58%, respectively, when five new TB tracks are installed. The solution effectiveness of the model is related to the number of new TB tracks, and the NORM decreases by an average of [Formula: see text] after adding new TB tracks to a station.","PeriodicalId":23279,"journal":{"name":"Transportation Research Record","volume":"68 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981231203157","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The resilience of an urban rail transit (URT) network when faced with disruptions is affected by the locations of stations equipped with turn-back (TB) tracks. However, limited studies have enhanced the resilience of a URT network by setting new TB tracks. The present work addresses this gap by proposing and solving a scenario model for improving the operation of a URT network under normal conditions and disruptions by considering uncertain disruptions. A solution algorithm combined with the non-dominated sorting genetic algorithm-II is proposed to solve the model. Numerical experiments conducted on the Chengdu subway system indicate that the resilience of a URT network is significantly affected by TB operations provided at stations equipped with TB tracks. Compared with a network without new TB tracks, the matching degree between passenger flow spatial distribution and TB convenience, and the network’s overall resilience metric (NORM) are improved by 12.05% and 0.58%, respectively, when five new TB tracks are installed. The solution effectiveness of the model is related to the number of new TB tracks, and the NORM decreases by an average of [Formula: see text] after adding new TB tracks to a station.
期刊介绍:
Transportation Research Record: Journal of the Transportation Research Board is one of the most cited and prolific transportation journals in the world, offering unparalleled depth and breadth in the coverage of transportation-related topics. The TRR publishes approximately 70 issues annually of outstanding, peer-reviewed papers presenting research findings in policy, planning, administration, economics and financing, operations, construction, design, maintenance, safety, and more, for all modes of transportation. This site provides electronic access to a full compilation of papers since the 1996 series.