{"title":"Statistical characterization of full-margin rupture recurrence for Cascadia subduction zone using event time resampling and Gaussian mixture model","authors":"Katsuichiro Goda","doi":"10.1186/s40562-023-00306-6","DOIUrl":null,"url":null,"abstract":"Abstract Earthquake occurrence modeling of large subduction events involves significant uncertainty, stemming from the scarcity of geological data and inaccuracy of dating techniques. The previous research on statistical modeling of full-margin ruptures of the Cascadia subduction zone attempted to address these issues. However, the adopted resampling method to account for the uncertain marine turbidite age data from the Cascadia subduction zone was not sufficient in the sample size. This study presents a statistical approach based on the Gaussian mixture model applied to significantly larger resampled Cascadia age data. The results suggest that the 3-component Gaussian mixture model outperforms the 2-component Gaussian mixture model and the 1-component renewal models by capturing the long gap and short-term clustering. The developed Gaussian mixture model is well suited to apply to probabilistic seismic and tsunami hazard analysis and the calculation of long-term probability of the future full-margin Cascadia events by considering the elapsed time since the last event.","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":"62 4","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40562-023-00306-6","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Earthquake occurrence modeling of large subduction events involves significant uncertainty, stemming from the scarcity of geological data and inaccuracy of dating techniques. The previous research on statistical modeling of full-margin ruptures of the Cascadia subduction zone attempted to address these issues. However, the adopted resampling method to account for the uncertain marine turbidite age data from the Cascadia subduction zone was not sufficient in the sample size. This study presents a statistical approach based on the Gaussian mixture model applied to significantly larger resampled Cascadia age data. The results suggest that the 3-component Gaussian mixture model outperforms the 2-component Gaussian mixture model and the 1-component renewal models by capturing the long gap and short-term clustering. The developed Gaussian mixture model is well suited to apply to probabilistic seismic and tsunami hazard analysis and the calculation of long-term probability of the future full-margin Cascadia events by considering the elapsed time since the last event.
Geoscience LettersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍:
Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.