OptiQL: Robust Optimistic Locking for Memory-Optimized Indexes

Ge Shi, Ziyi Yan, Tianzheng Wang
{"title":"OptiQL: Robust Optimistic Locking for Memory-Optimized Indexes","authors":"Ge Shi, Ziyi Yan, Tianzheng Wang","doi":"10.1145/3617336","DOIUrl":null,"url":null,"abstract":"Modern memory-optimized indexes often use optimistic locks for concurrent accesses. Read operations can proceed optimistically without taking the lock, greatly improving performance on multicore CPUs. But this is at the cost of robustness against contention where many threads contend on a small set of locks, causing excessive cacheline invalidation, interconnect traffic and eventually performance collapse. Yet existing solutions often sacrifice desired properties such as compact 8-byte lock size and fairness among lock requesters. This paper presents optimistic queuing lock (OptiQL), a new optimistic lock for database indexing to solve this problem. OptiQL extends the classic MCS lock---a fair, compact and robust mutual exclusion lock---with optimistic read capabilities for index workloads to achieve both robustness and high performance while maintaining various desirable properties. Evaluation using memory-optimized B+-trees on a 40-core, dual-socket server shows that OptiQL matches existing optimistic locks for read operations, while avoiding performance collapse under high contention.","PeriodicalId":498157,"journal":{"name":"Proceedings of the ACM on Management of Data","volume":"34 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern memory-optimized indexes often use optimistic locks for concurrent accesses. Read operations can proceed optimistically without taking the lock, greatly improving performance on multicore CPUs. But this is at the cost of robustness against contention where many threads contend on a small set of locks, causing excessive cacheline invalidation, interconnect traffic and eventually performance collapse. Yet existing solutions often sacrifice desired properties such as compact 8-byte lock size and fairness among lock requesters. This paper presents optimistic queuing lock (OptiQL), a new optimistic lock for database indexing to solve this problem. OptiQL extends the classic MCS lock---a fair, compact and robust mutual exclusion lock---with optimistic read capabilities for index workloads to achieve both robustness and high performance while maintaining various desirable properties. Evaluation using memory-optimized B+-trees on a 40-core, dual-socket server shows that OptiQL matches existing optimistic locks for read operations, while avoiding performance collapse under high contention.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OptiQL:用于内存优化索引的健壮乐观锁定
现代内存优化索引通常使用乐观锁进行并发访问。读操作可以在不占用锁的情况下乐观地进行,从而大大提高了多核cpu上的性能。但是,这是以抗争用的健壮性为代价的,其中许多线程争用一小组锁,导致过多的缓存无效、互连流量和最终的性能崩溃。然而,现有的解决方案往往会牺牲理想的属性,比如紧凑的8字节锁大小和锁请求者之间的公平性。为了解决这一问题,本文提出了一种新的面向数据库索引的乐观排队锁(OptiQL)。OptiQL扩展了经典的MCS锁——一种公平、紧凑和健壮的互斥锁——为索引工作负载提供了乐观的读取能力,在保持各种理想属性的同时实现了健壮性和高性能。在40核双套接字服务器上使用内存优化的B+树进行评估,结果表明OptiQL匹配现有的读操作乐观锁,同时避免了高争用下的性能崩溃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Verification of Unary Communicating Datalog Programs Postulates for Provenance: Instance-based provenance for first-order logic Tight Lower Bounds for Directed Cut Sparsification and Distributed Min-Cut Containment of Graph Queries Modulo Schema Bag Semantics Conjunctive Query Containment. Four Small Steps Towards Undecidability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1