Origin-Destination Travel Time Oracle for Map-based Services

Yan Lin, Huaiyu Wan, Jilin Hu, Shengnan Guo, Bin Yang, Youfang Lin, Christian S. Jensen
{"title":"Origin-Destination Travel Time Oracle for Map-based Services","authors":"Yan Lin, Huaiyu Wan, Jilin Hu, Shengnan Guo, Bin Yang, Youfang Lin, Christian S. Jensen","doi":"10.1145/3617337","DOIUrl":null,"url":null,"abstract":"Given an origin (O), a destination (D), and a departure time (T), an Origin-Destination (OD) travel time oracle~(ODT-Oracle) returns an estimate of the time it takes to travel from O to D when departing at T. ODT-Oracles serve important purposes in map-based services. To enable the construction of such oracles, we provide a travel-time estimation (TTE) solution that leverages historical trajectories to estimate time-varying travel times for OD pairs. The problem is complicated by the fact that multiple historical trajectories with different travel times may connect an OD pair, while trajectories may vary from one another. To solve the problem, it is crucial to remove outlier trajectories when doing travel time estimation for future queries. We propose a novel, two-stage framework called Diffusion-based Origin-destination Travel Time Estimation (DOT), that solves the problem. First, DOT employs a conditioned Pixelated Trajectories (PiT) denoiser that enables building a diffusion-based PiT inference process by learning correlations between OD pairs and historical trajectories. Specifically, given an OD pair and a departure time, we aim to infer a PiT. Next, DOT encompasses a Masked Vision Transformer~(MViT) that effectively and efficiently estimates a travel time based on the inferred PiT. We report on extensive experiments on two real-world datasets that offer evidence that DOT is capable of outperforming baseline methods in terms of accuracy, scalability, and explainability.","PeriodicalId":498157,"journal":{"name":"Proceedings of the ACM on Management of Data","volume":"33 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given an origin (O), a destination (D), and a departure time (T), an Origin-Destination (OD) travel time oracle~(ODT-Oracle) returns an estimate of the time it takes to travel from O to D when departing at T. ODT-Oracles serve important purposes in map-based services. To enable the construction of such oracles, we provide a travel-time estimation (TTE) solution that leverages historical trajectories to estimate time-varying travel times for OD pairs. The problem is complicated by the fact that multiple historical trajectories with different travel times may connect an OD pair, while trajectories may vary from one another. To solve the problem, it is crucial to remove outlier trajectories when doing travel time estimation for future queries. We propose a novel, two-stage framework called Diffusion-based Origin-destination Travel Time Estimation (DOT), that solves the problem. First, DOT employs a conditioned Pixelated Trajectories (PiT) denoiser that enables building a diffusion-based PiT inference process by learning correlations between OD pairs and historical trajectories. Specifically, given an OD pair and a departure time, we aim to infer a PiT. Next, DOT encompasses a Masked Vision Transformer~(MViT) that effectively and efficiently estimates a travel time based on the inferred PiT. We report on extensive experiments on two real-world datasets that offer evidence that DOT is capable of outperforming baseline methods in terms of accuracy, scalability, and explainability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于地图服务的出发地旅行时间Oracle
给定起点(O),目的地(D)和出发时间(T),起点-目的地(OD)旅行时间预测器~(ODT-Oracle)返回从T出发时从O到D所需时间的估计。ODT-Oracle在基于地图的服务中发挥重要作用。为了能够构建这样的预言机,我们提供了一个旅行时间估计(TTE)解决方案,该解决方案利用历史轨迹来估计OD对的时变旅行时间。具有不同旅行时间的多个历史轨迹可能连接一个OD对,而轨迹可能彼此不同,这使问题变得复杂。为了解决这个问题,在为未来的查询做旅行时间估计时,去除异常轨迹是至关重要的。我们提出了一种新的两阶段框架,称为基于扩散的出发地旅行时间估计(DOT),以解决这个问题。首先,DOT采用条件像素化轨迹(PiT)去噪器,通过学习OD对和历史轨迹之间的相关性,构建基于扩散的PiT推理过程。具体来说,给定一个OD对和一个出发时间,我们的目标是推断出一个PiT。接下来,DOT包含一个掩蔽视觉变压器~(MViT),它根据推断的PiT有效地估计旅行时间。我们报告了在两个真实世界数据集上进行的广泛实验,这些实验提供了证据,证明DOT在准确性、可扩展性和可解释性方面能够优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Verification of Unary Communicating Datalog Programs Postulates for Provenance: Instance-based provenance for first-order logic Tight Lower Bounds for Directed Cut Sparsification and Distributed Min-Cut Containment of Graph Queries Modulo Schema Bag Semantics Conjunctive Query Containment. Four Small Steps Towards Undecidability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1