{"title":"Reply to discussion on numerical validation of Gassmann’s equations (Yury Alkhimenkov, 2023, Geophysics, 88, no. 4, A25–A29) by Leon Thomsen","authors":"Yury Alkhimenkov","doi":"10.1190/geo2023-0678.1","DOIUrl":null,"url":null,"abstract":"Gassmann’s equations have been known for several decades and are widely used in geophysics. These equations are treated as exact if all the assumptions used in their derivation are fulfilled. However, a recent theoretical study claimed that Gassmann’s equations contain an error. Shortly after that, I performed a three-dimensional numerical calculation on a simple pore geometry that verifies the validity of Gassmann’s equations. This pore geometry was simpler than those in real rocks but arbitrary. Furthermore, the employed pore geometry did not contain any special features (among all possible geometries) that were tailored to make it consistent with Gassmann’s equations. In other recent studies, I also performed numerical calculations on several other more complex pore geometries that supported the validity of Gassmann’s equations. To further support the validity of these equations, I provide here one more convergence study using a more realistic geometry of the pore space. Given that there are several studies that rederive Gassmann’s equations using different methods and numerical studies that verify them for different pore geometries, it can be concluded that Gassmann’s equations can be used in geophysics without concern if their assumptions are fulfilled. MATLAB routines to reproduce the presented results are provided.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"4 6","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0678.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gassmann’s equations have been known for several decades and are widely used in geophysics. These equations are treated as exact if all the assumptions used in their derivation are fulfilled. However, a recent theoretical study claimed that Gassmann’s equations contain an error. Shortly after that, I performed a three-dimensional numerical calculation on a simple pore geometry that verifies the validity of Gassmann’s equations. This pore geometry was simpler than those in real rocks but arbitrary. Furthermore, the employed pore geometry did not contain any special features (among all possible geometries) that were tailored to make it consistent with Gassmann’s equations. In other recent studies, I also performed numerical calculations on several other more complex pore geometries that supported the validity of Gassmann’s equations. To further support the validity of these equations, I provide here one more convergence study using a more realistic geometry of the pore space. Given that there are several studies that rederive Gassmann’s equations using different methods and numerical studies that verify them for different pore geometries, it can be concluded that Gassmann’s equations can be used in geophysics without concern if their assumptions are fulfilled. MATLAB routines to reproduce the presented results are provided.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.