Deep Learning in Chinese Text Information Extraction Model for Coastal Biodiversity

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal on Semantic Web and Information Systems Pub Date : 2023-10-10 DOI:10.4018/ijswis.331756
Xiujuan Wang, Xuerong Li
{"title":"Deep Learning in Chinese Text Information Extraction Model for Coastal Biodiversity","authors":"Xiujuan Wang, Xuerong Li","doi":"10.4018/ijswis.331756","DOIUrl":null,"url":null,"abstract":"In the coastal areas of China, scientists have collected nearly 500 species of coastal plants and seaweeds. The collected information includes species description, morphological characteristics, habitat distribution and resource value of plants in China. By effectively extracting Chinese text information, this article establishes a Chinese text information extraction model based on DL. This article is based on short-term and short-term memory artificial neural networks for short text classification. In addition, this article also integrates the L-MFCNN models of MFCNN for short text classification. Comparing the two methods with traditional text recognition algorithms, information extraction based on syntax analysis and deep learning, the results show that, compared with the comparison method, the recognition accuracy of Chinese text information of this neural network model can reach 96.69%. Through model training and parameter adjustment, Chinese text information of coastal biodiversity can be quickly extracted, and species categories or names can be identified.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"27 1","pages":"0"},"PeriodicalIF":4.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijswis.331756","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the coastal areas of China, scientists have collected nearly 500 species of coastal plants and seaweeds. The collected information includes species description, morphological characteristics, habitat distribution and resource value of plants in China. By effectively extracting Chinese text information, this article establishes a Chinese text information extraction model based on DL. This article is based on short-term and short-term memory artificial neural networks for short text classification. In addition, this article also integrates the L-MFCNN models of MFCNN for short text classification. Comparing the two methods with traditional text recognition algorithms, information extraction based on syntax analysis and deep learning, the results show that, compared with the comparison method, the recognition accuracy of Chinese text information of this neural network model can reach 96.69%. Through model training and parameter adjustment, Chinese text information of coastal biodiversity can be quickly extracted, and species categories or names can be identified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海岸带生物多样性中文文本信息提取模型的深度学习研究
在中国沿海地区,科学家们已经收集了近500种沿海植物和海藻。收集的资料包括中国植物的种类描述、形态特征、生境分布和资源价值。为了有效地提取中文文本信息,本文建立了一种基于深度学习的中文文本信息提取模型。本文是基于短时记忆和短时记忆的人工神经网络对短文本进行分类。此外,本文还集成了MFCNN的L-MFCNN模型,用于短文本分类。将两种方法与传统的文本识别算法、基于语法分析的信息提取和深度学习进行比较,结果表明,与比较方法相比,该神经网络模型对中文文本信息的识别准确率可达到96.69%。通过模型训练和参数调整,可以快速提取沿海生物多样性的中文文本信息,识别物种类别或名称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
期刊最新文献
A Web Semantic-Based Text Analysis Approach for Enhancing Named Entity Recognition Using PU-Learning and Negative Sampling Blockchain-Based Lightweight Authentication Mechanisms for Industrial Internet of Things and Information Systems A Network Intrusion Detection Method for Information Systems Using Federated Learning and Improved Transformer Semantic Trajectory Planning for Industrial Robotics Digital Copyright Management Mechanism Based on Dynamic Encryption for Multiplatform Browsers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1