R. Cioni, D. Andronico, L. Cappelli, A. Aravena, P. Gabellini, A. Cristaldi, R.A. Corsaro, M. Cantarero, F. Ciancitto, E. De Beni, G. Ganci
{"title":"Products and dynamics of lava-snow explosions: The 16 March 2017 explosion at Mount Etna, Italy","authors":"R. Cioni, D. Andronico, L. Cappelli, A. Aravena, P. Gabellini, A. Cristaldi, R.A. Corsaro, M. Cantarero, F. Ciancitto, E. De Beni, G. Ganci","doi":"10.1130/b37102.1","DOIUrl":null,"url":null,"abstract":"Volcanic hazards associated with lava flows advancing on snow cover are often underrated, although sudden explosions related to different processes of lava-snow/ice contact can occur rapidly and are only preceded by small, easily underrated precursors. On 16 March 2017, during a mildly effusive and explosive eruption at Mount Etna, Italy, a slowly advancing lava lobe interacted with the snow cover to produce a sudden, brief sequence of explosions. White vapor, brown ash, and coarse material were suddenly ejected, and the products struck a group of people, injuring some of them. The proximal deposit formed a continuous mantle of ash, lapilli, and decimeter-sized bombs, while the ballistic material travelled up to 200 m from the lava edge. The deposit was estimated to have a mass of 7.1 ± 0.8 × 104 kg, which corresponds to a volume of 32.0 ± 3.6 m3 of lava being removed by the explosion. Data related to the texture and morphology of the ejected clasts were used to constrain a model of lava-snow interaction. The results suggest that the mechanism causing the explosions was the progressive build-up of pressure due to vapor accumulation under the lava flow, while no evidence was found for the occurrence of fuel-coolant interaction processes. Although these low-intensity explosions are not particularly frequent, the data set collected provides, for the first time, quantitative information about the processes involved and the associated hazard and suggests that mitigation measures should be established to prevent potentially dramatic accidents at worldwide volcanoes frequented by tourists and with fairly easy access, such as Etna.","PeriodicalId":55104,"journal":{"name":"Geological Society of America Bulletin","volume":"92 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society of America Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/b37102.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Volcanic hazards associated with lava flows advancing on snow cover are often underrated, although sudden explosions related to different processes of lava-snow/ice contact can occur rapidly and are only preceded by small, easily underrated precursors. On 16 March 2017, during a mildly effusive and explosive eruption at Mount Etna, Italy, a slowly advancing lava lobe interacted with the snow cover to produce a sudden, brief sequence of explosions. White vapor, brown ash, and coarse material were suddenly ejected, and the products struck a group of people, injuring some of them. The proximal deposit formed a continuous mantle of ash, lapilli, and decimeter-sized bombs, while the ballistic material travelled up to 200 m from the lava edge. The deposit was estimated to have a mass of 7.1 ± 0.8 × 104 kg, which corresponds to a volume of 32.0 ± 3.6 m3 of lava being removed by the explosion. Data related to the texture and morphology of the ejected clasts were used to constrain a model of lava-snow interaction. The results suggest that the mechanism causing the explosions was the progressive build-up of pressure due to vapor accumulation under the lava flow, while no evidence was found for the occurrence of fuel-coolant interaction processes. Although these low-intensity explosions are not particularly frequent, the data set collected provides, for the first time, quantitative information about the processes involved and the associated hazard and suggests that mitigation measures should be established to prevent potentially dramatic accidents at worldwide volcanoes frequented by tourists and with fairly easy access, such as Etna.
期刊介绍:
The GSA Bulletin is the Society''s premier scholarly journal, published continuously since 1890. Its first editor was William John (WJ) McGee, who was responsible for establishing much of its original style and format. Fully refereed, each bimonthly issue includes 16-20 papers focusing on the most definitive, timely, and classic-style research in all earth-science disciplines. The Bulletin welcomes most contributions that are data-rich, mature studies of broad interest (i.e., of interest to more than one sub-discipline of earth science) and of lasting, archival quality. These include (but are not limited to) studies related to tectonics, structural geology, geochemistry, geophysics, hydrogeology, marine geology, paleoclimatology, planetary geology, quaternary geology/geomorphology, sedimentary geology, stratigraphy, and volcanology. The journal is committed to further developing both the scope of its content and its international profile so that it publishes the most current earth science research that will be of wide interest to geoscientists.