{"title":"Adaptive and Convex Optimization-Inspired Workflow Scheduling for Cloud Environment","authors":"Kamlesh Lakhwani, Gajanand Sharma, Ramandeep Sandhu, Naresh Kumar Nagwani, Sandeep Bhargava, Varsha Arya, Ammar Almomani","doi":"10.4018/ijcac.324809","DOIUrl":null,"url":null,"abstract":"Scheduling large-scale and resource-intensive workflows in cloud infrastructure is one of the main challenges for cloud service providers (CSPs). Cloud infrastructure is more efficient when virtual machines and other resources work up to their full potential. The main factor that influences the quality of cloud services is the distribution of workflow on virtual machines (VMs). Scheduling tasks to VMs depends on the type of workflow and mechanism of resource allocation. Scientific workflows include large-scale data transfer and consume intensive resources of cloud infrastructures. Therefore, scheduling of tasks from scientific workflows on VMs requires efficient and optimized workflow scheduling techniques. This paper proposes an optimised workflow scheduling approach that aims to improve the utilization of cloud resources without increasing execution time and execution cost.","PeriodicalId":51857,"journal":{"name":"International Journal of Cloud Applications and Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cloud Applications and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcac.324809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
Scheduling large-scale and resource-intensive workflows in cloud infrastructure is one of the main challenges for cloud service providers (CSPs). Cloud infrastructure is more efficient when virtual machines and other resources work up to their full potential. The main factor that influences the quality of cloud services is the distribution of workflow on virtual machines (VMs). Scheduling tasks to VMs depends on the type of workflow and mechanism of resource allocation. Scientific workflows include large-scale data transfer and consume intensive resources of cloud infrastructures. Therefore, scheduling of tasks from scientific workflows on VMs requires efficient and optimized workflow scheduling techniques. This paper proposes an optimised workflow scheduling approach that aims to improve the utilization of cloud resources without increasing execution time and execution cost.