Optimal Placement and Sizing of Distributed Generations for Power Losses Minimization Using PSO-Based Deep Learning Techniques

Bello-Pierre Ngoussandou, Nicodem Nisso, Dieudonné Kaoga Kidmo,   Kitmo
{"title":"Optimal Placement and Sizing of Distributed Generations for Power Losses Minimization Using PSO-Based Deep Learning Techniques","authors":"Bello-Pierre Ngoussandou, Nicodem Nisso, Dieudonné Kaoga Kidmo,   Kitmo","doi":"10.4236/sgre.2023.149010","DOIUrl":null,"url":null,"abstract":"The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations are used for self-consumption with excess energy injected into centralized grids (CGs). However, the improper sizing of renewable energy systems (RESs) exposes the entire system to power losses. This work presents an optimization of a system consisting of distributed generations. Firstly, PSO algorithms evaluate the size of the entire system on the IEEE bus 14 test standard. Secondly, the size of the system is allocated using improved Particles Swarm Optimization (IPSO). The convergence speed of the objective function enables a conjecture to be made about the robustness of the proposed system. The power and voltage profile on the IEEE 14-bus standard displays a decrease in power losses and an appropriate response to energy demands (EDs), validating the proposed method.","PeriodicalId":64562,"journal":{"name":"智能电网与可再生能源(英文)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能电网与可再生能源(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/sgre.2023.149010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations are used for self-consumption with excess energy injected into centralized grids (CGs). However, the improper sizing of renewable energy systems (RESs) exposes the entire system to power losses. This work presents an optimization of a system consisting of distributed generations. Firstly, PSO algorithms evaluate the size of the entire system on the IEEE bus 14 test standard. Secondly, the size of the system is allocated using improved Particles Swarm Optimization (IPSO). The convergence speed of the objective function enables a conjecture to be made about the robustness of the proposed system. The power and voltage profile on the IEEE 14-bus standard displays a decrease in power losses and an appropriate response to energy demands (EDs), validating the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于pso的深度学习技术实现功耗最小化的分布式代的最佳放置和大小
将分布式发电系统(dg)集成到配电系统(DSs)中,正日益成为补偿孤立局部能源系统(ILESs)的一种解决方案。此外,分布式发电用于自我消费,多余的能量注入集中电网(CGs)。然而,可再生能源系统(RESs)的不适当的规模暴露了整个系统的电力损失。这项工作提出了一个由分布式代组成的系统的优化。首先,粒子群算法在IEEE总线14测试标准上评估整个系统的大小。其次,采用改进的粒子群优化算法(IPSO)对系统的大小进行分配。目标函数的收敛速度使我们可以对所提系统的鲁棒性作出推测。IEEE 14总线标准的功率和电压分布显示功率损耗减少,并且对能量需求(EDs)有适当的响应,验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
307
期刊最新文献
Experimental Investigations of the Effects of Secondary Air Injection on Gaseous Emission Profiles (NOx, NO, NO2, CO) and Hydrocarbons (CxHx) in Cookstoves Using Charcoal from Eucalyptus glandis Microgrid Optimal Scheduling Carbon and Water Footprint Evaluation of 120Wp Rural Household Photovoltaic System: Case Study Performance of the Boost Chopper, Comparative Study between PI Control and Neural Control to Regulate Its Output Voltage An Energy Production System Powered by Solar Heat with Biogas Dry Reforming Reactor and Solid Oxide Fuel Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1