Field Measurement and Energy Analysis of Ground-Borne Vibration around High-Speed Railway Viaduct

IF 1.2 4区 工程技术 Q3 ACOUSTICS Shock and Vibration Pub Date : 2023-09-20 DOI:10.1155/2023/4640726
Yanmei Cao, Qi Xiang, Boyang Li, Zhaoyang Li
{"title":"Field Measurement and Energy Analysis of Ground-Borne Vibration around High-Speed Railway Viaduct","authors":"Yanmei Cao, Qi Xiang, Boyang Li, Zhaoyang Li","doi":"10.1155/2023/4640726","DOIUrl":null,"url":null,"abstract":"In order to investigate the vibration characteristics and propagation mechanism of ground vibrations induced by high-speed train passing through the viaduct, a field experiment is carried out, and the measured data is deeply analyzed. Besides the independent time domain and frequency domain analysis, the continuous wavelet transform (CWT) is performed on the vibration signal to analyze the energy distribution characteristics of ground vibrations from the view of time-frequency synchronous analysis. The experimental results show that the ground vibrations have obvious nonstationary characteristics; the first dominant frequency of ground vibration is concentrated between 40–55 Hz, which is affected by the excitation frequency of the train wheel axle and the peak frequency of wheel-rail interaction force. The ground vibrations attenuate gradually as the distance from the railway track increases, in which the high-frequency components above 50 Hz attenuate faster, low-frequency components below 8 Hz continuously decay in the near field, and medium-frequency components within 8−50 Hz decay slower with a longer transmission distance. Compared with traditional methods, time-frequency synchronous analysis of ground vibration signals is more accurate and intuitive, and the CWT can be used as a promising method in the analysis of ground-borne vibration from high-speed railway.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":"26 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4640726","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to investigate the vibration characteristics and propagation mechanism of ground vibrations induced by high-speed train passing through the viaduct, a field experiment is carried out, and the measured data is deeply analyzed. Besides the independent time domain and frequency domain analysis, the continuous wavelet transform (CWT) is performed on the vibration signal to analyze the energy distribution characteristics of ground vibrations from the view of time-frequency synchronous analysis. The experimental results show that the ground vibrations have obvious nonstationary characteristics; the first dominant frequency of ground vibration is concentrated between 40–55 Hz, which is affected by the excitation frequency of the train wheel axle and the peak frequency of wheel-rail interaction force. The ground vibrations attenuate gradually as the distance from the railway track increases, in which the high-frequency components above 50 Hz attenuate faster, low-frequency components below 8 Hz continuously decay in the near field, and medium-frequency components within 8−50 Hz decay slower with a longer transmission distance. Compared with traditional methods, time-frequency synchronous analysis of ground vibration signals is more accurate and intuitive, and the CWT can be used as a promising method in the analysis of ground-borne vibration from high-speed railway.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高速铁路高架桥周围地面振动的现场测量与能量分析
为研究高速列车通过高架桥引起地面振动的振动特性及传播机理,进行了现场试验,并对实测数据进行了深入分析。在进行独立时域和频域分析的基础上,对振动信号进行连续小波变换,从时频同步分析的角度分析地面振动的能量分布特征。实验结果表明,地面振动具有明显的非平稳特性;地面振动第一主导频率集中在40 ~ 55 Hz之间,受列车轮轴激励频率和轮轨相互作用力峰值频率的影响。随着距离铁路轨道的增加,地面振动逐渐衰减,其中50 Hz以上的高频分量衰减较快,8 Hz以下的低频分量在近场不断衰减,8 ~ 50 Hz范围内的中频分量随着传输距离的增加衰减较慢。与传统方法相比,地面振动信号的时频同步分析更加准确和直观,CWT在高速铁路地面振动分析中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
期刊最新文献
Control Effect Analysis and Engineering Application of Anchor Cable Beam-Truss Structure on Large-Deformation Roadway in Deep Coal Mine Study on Pretightening Loss Effect of Bolt Support in Deep Soft Rock Roadway Examination of Precast Concrete Movement Subjected to Vibration Employing Mass-Spring Model with Two Convective Masses An Investigation of the Acoustic Enclosure of an Air Conditioning Compressor Using Response Surface Analysis and Topological Rigidity Optimization Nonlinear Displacement of the Electrothermal V-Shaped Actuator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1