{"title":"Finite-time output feedback trans-media tracking control of a slender body trans-media vehicle via neural network extended state observer","authors":"Shichong Wu, Lingli Xie, Jun Xian","doi":"10.1177/01423312231188628","DOIUrl":null,"url":null,"abstract":"The emerging trans-media vehicle is significant due to its amphibious ability. A finite-time output feedback trans-media tracking control scheme is proposed for a slender body trans-media vehicle with unknown time-varying hydrodynamics and external disturbances. First, a novel neural network extended state observer is developed to observe the vehicle’s velocities and handle the time-varying hydrodynamics and total disturbances simultaneously. Then, combined with the proposed observer, the finite-time command filtered backstepping technique is carefully constructed to yield the finite-time output feedback tracking control. The strength of the proposed approach to the existing methods is that it ensures the trans-media tracking errors converge to the small region of origin within a finite time, even in the absence of velocity measurements. The simulations are given to illustrate the superiority of the proposed scheme.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"67 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312231188628","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The emerging trans-media vehicle is significant due to its amphibious ability. A finite-time output feedback trans-media tracking control scheme is proposed for a slender body trans-media vehicle with unknown time-varying hydrodynamics and external disturbances. First, a novel neural network extended state observer is developed to observe the vehicle’s velocities and handle the time-varying hydrodynamics and total disturbances simultaneously. Then, combined with the proposed observer, the finite-time command filtered backstepping technique is carefully constructed to yield the finite-time output feedback tracking control. The strength of the proposed approach to the existing methods is that it ensures the trans-media tracking errors converge to the small region of origin within a finite time, even in the absence of velocity measurements. The simulations are given to illustrate the superiority of the proposed scheme.
期刊介绍:
Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.