Michel Bechtold, Sara Modanesi, Hans Lievens, Pierre Baguis, Isis Brangers, Alberto Carrassi, Augusto Getirana, Alexander Gruber, Zdenko Heyvaert, Christian Massari, Samuel Scherrer, Stéphane Vannitsem, Gabrielle De Lannoy
{"title":"Assimilation of Sentinel-1 backscatter into a land surface model with river routing and its impact on streamflow simulations in two Belgian catchments","authors":"Michel Bechtold, Sara Modanesi, Hans Lievens, Pierre Baguis, Isis Brangers, Alberto Carrassi, Augusto Getirana, Alexander Gruber, Zdenko Heyvaert, Christian Massari, Samuel Scherrer, Stéphane Vannitsem, Gabrielle De Lannoy","doi":"10.1175/jhm-d-22-0198.1","DOIUrl":null,"url":null,"abstract":"Abstract Accurate streamflow simulations rely on good estimates of the catchment-scale soil moisture distribution. Here, we evaluated the potential of Sentinel-1 backscatter data assimilation (DA) to improve soil moisture and streamflow estimates. Our DA system consisted of the Noah-MP land surface model coupled to the HyMAP river routing model and the water cloud model as backscatter observation operator. The DA system was set up at 0.01° resolution for two contrasting catchments in Belgium: i) the Demer catchment dominated by agriculture, and ii) the Ourthe catchment dominated by mixed forests. We present results of two experiments with an ensemble Kalman filter updating either soil moisture only or soil moisture and Leaf Area Index (LAI). The DA experiments covered the period January 2015 through August 2021 and were evaluated with independent rainfall error estimates based on station data, LAI from optical remote sensing, soil moisture retrievals from passive microwave observations, and streamflow measurements. Our results indicate that the assimilation of Sentinel-1 backscatter observations can partly correct errors in surface soil moisture due to rainfall errors and overall improve surface soil moisture estimates. However, updating soil moisture and LAI simultaneously did not bring any benefit over updating soil moisture only. Our results further indicate that streamflow estimates can be improved through Sentinel-1 DA in a catchment with strong soil moisture-runoff coupling, as observed for the Ourthe catchment, suggesting that there is potential for Sentinel-1 DA even for forested catchments.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"24 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jhm-d-22-0198.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Accurate streamflow simulations rely on good estimates of the catchment-scale soil moisture distribution. Here, we evaluated the potential of Sentinel-1 backscatter data assimilation (DA) to improve soil moisture and streamflow estimates. Our DA system consisted of the Noah-MP land surface model coupled to the HyMAP river routing model and the water cloud model as backscatter observation operator. The DA system was set up at 0.01° resolution for two contrasting catchments in Belgium: i) the Demer catchment dominated by agriculture, and ii) the Ourthe catchment dominated by mixed forests. We present results of two experiments with an ensemble Kalman filter updating either soil moisture only or soil moisture and Leaf Area Index (LAI). The DA experiments covered the period January 2015 through August 2021 and were evaluated with independent rainfall error estimates based on station data, LAI from optical remote sensing, soil moisture retrievals from passive microwave observations, and streamflow measurements. Our results indicate that the assimilation of Sentinel-1 backscatter observations can partly correct errors in surface soil moisture due to rainfall errors and overall improve surface soil moisture estimates. However, updating soil moisture and LAI simultaneously did not bring any benefit over updating soil moisture only. Our results further indicate that streamflow estimates can be improved through Sentinel-1 DA in a catchment with strong soil moisture-runoff coupling, as observed for the Ourthe catchment, suggesting that there is potential for Sentinel-1 DA even for forested catchments.
期刊介绍:
The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.