Levan-based bioactive hydrogels containing herbal liposome in treating acute wounds

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Bioactive and Compatible Polymers Pub Date : 2023-09-20 DOI:10.1177/08839115231198528
Özlem Erdal Altıntaş, Pınar Aytar Çelik
{"title":"Levan-based bioactive hydrogels containing herbal liposome in treating acute wounds","authors":"Özlem Erdal Altıntaş, Pınar Aytar Çelik","doi":"10.1177/08839115231198528","DOIUrl":null,"url":null,"abstract":"Hydrogels in active wound care products are 3D polymeric scaffolds that provide the desired moisture balance in the wound area with their high water retention capacity. Thanks to their biocompatible properties, flexible and porous structures, and high hydrophilic properties, they have frequently been preferred in the repair and regeneration of cells and tissues and the controlled release of bioactive substances to the target area. In this study, hydrogel structures were developed for the first time with levan produced by Halomonas elongata 153B halophilic bacteria. Extracts from Plantago lanceolata L., commonly known as a wound herb, which has medicinal importance for cell regeneration, ensuring tissue integrity in a short time and reducing infections in the wound area, were obtained and extract-loaded liposome structures were formed for controlled release into the wound area. The wound healing efficacy of the composite material developed by loading herbal liposomes into levan-based hydrogel structures was evaluated in an in vitro wound model. Thus, a natural, biocompatible, biodegradable, and functional wound care product containing herbal liposomes suitable for both clinical applications and point-of-care use has been developed. The developed bioactive hydrogels are a promising therapeutic approach for the healing of acute wounds. Graphical abstract [Formula: see text]","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/08839115231198528","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels in active wound care products are 3D polymeric scaffolds that provide the desired moisture balance in the wound area with their high water retention capacity. Thanks to their biocompatible properties, flexible and porous structures, and high hydrophilic properties, they have frequently been preferred in the repair and regeneration of cells and tissues and the controlled release of bioactive substances to the target area. In this study, hydrogel structures were developed for the first time with levan produced by Halomonas elongata 153B halophilic bacteria. Extracts from Plantago lanceolata L., commonly known as a wound herb, which has medicinal importance for cell regeneration, ensuring tissue integrity in a short time and reducing infections in the wound area, were obtained and extract-loaded liposome structures were formed for controlled release into the wound area. The wound healing efficacy of the composite material developed by loading herbal liposomes into levan-based hydrogel structures was evaluated in an in vitro wound model. Thus, a natural, biocompatible, biodegradable, and functional wound care product containing herbal liposomes suitable for both clinical applications and point-of-care use has been developed. The developed bioactive hydrogels are a promising therapeutic approach for the healing of acute wounds. Graphical abstract [Formula: see text]
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含草药脂质体的以levan为基础的生物活性水凝胶治疗急性伤口
活性伤口护理产品中的水凝胶是3D聚合物支架,在伤口区域提供所需的水分平衡,具有高保水能力。由于其生物相容性、柔韧性和多孔结构以及高亲水性,它们经常被首选用于细胞和组织的修复和再生以及生物活性物质向靶区域的控制释放。本研究首次利用嗜盐嗜盐菌长盐单胞菌153B生产的levan构建了水凝胶结构。我们获得了被称为伤口草药的车前草(Plantago lanceolata L.)提取物,该提取物具有细胞再生、短时间内保证组织完整性和减少创面感染的药用价值,并形成了装载提取物的脂质体结构,可控释到创面。在体外创面模型中,研究了将草药脂质体装入以利末为基础的水凝胶结构中制备的复合材料的创面愈合效果。因此,一种天然的、生物相容性的、可生物降解的、功能性的伤口护理产品含有草药脂质体,适合临床应用和护理点使用。所研制的生物活性水凝胶是一种很有前途的治疗急性伤口的方法。图形摘要[公式:见正文]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bioactive and Compatible Polymers
Journal of Bioactive and Compatible Polymers 工程技术-材料科学:生物材料
CiteScore
3.50
自引率
0.00%
发文量
27
审稿时长
2 months
期刊介绍: The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Textile waste-based biosensors for medical monitoring Gellan gum as a promising transplantation carrier for differentiated progenitor cells in ophthalmic therapies Sport technology in combination with neural guidance channels loaded with Inula helenium extract for peripheral nervous system repair Dual drug release profiles of salicylate-based polymers and encapsulated chlorhexidine as potential periodontitis treatments Synthesis of pH-sensitive polymeric micelle drug carries for potential cancer chemotherapy applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1