Feature selection algorithm for substation main equipment defect text mining based on natural language processing

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Cyber-Physical Systems: Theory and Applications Pub Date : 2023-09-20 DOI:10.1049/cps2.12079
Xiaoqing Mai, Tianhu Zhang, Changwu Hu, Yan Zhang
{"title":"Feature selection algorithm for substation main equipment defect text mining based on natural language processing","authors":"Xiaoqing Mai,&nbsp;Tianhu Zhang,&nbsp;Changwu Hu,&nbsp;Yan Zhang","doi":"10.1049/cps2.12079","DOIUrl":null,"url":null,"abstract":"<p>The dimension of relevant text feature space and feature weight of substation main equipment defect information is high, so it is difficult to accurately select mining features. The Natural Language Processing (NLP) medium and short-term neural network model is used to realise the defect information text feature word segmentation in the log. After extracting the text features of defect information of main substation equipment with high categories to form the feature space; the TF-IDF algorithm is designed to calculate the importance weight of text keywords, judge the criticality of defect information text feature vocabulary, accurately locate defect information text features, and realise defect information text feature mining. Experiments show that the algorithm has high precision for specific word segmentation of massive substation main equipment log information.</p>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.12079","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cps2.12079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The dimension of relevant text feature space and feature weight of substation main equipment defect information is high, so it is difficult to accurately select mining features. The Natural Language Processing (NLP) medium and short-term neural network model is used to realise the defect information text feature word segmentation in the log. After extracting the text features of defect information of main substation equipment with high categories to form the feature space; the TF-IDF algorithm is designed to calculate the importance weight of text keywords, judge the criticality of defect information text feature vocabulary, accurately locate defect information text features, and realise defect information text feature mining. Experiments show that the algorithm has high precision for specific word segmentation of massive substation main equipment log information.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自然语言处理的变电站主设备缺陷文本挖掘特征选择算法
变电站主设备缺陷信息的相关文本特征空间维度和特征权重较高,难以准确选择挖掘特征。采用自然语言处理(NLP)中短期神经网络模型实现日志中缺陷信息文本特征词的分割。在提取分类较多的主变设备缺陷信息文本特征形成特征空间后,设计 TF-IDF 算法计算文本关键词的重要性权重,判断缺陷信息文本特征词汇的关键性,准确定位缺陷信息文本特征,实现缺陷信息文本特征挖掘。实验表明,该算法对海量变电站主设备日志信息的特定词分割具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Cyber-Physical Systems: Theory and Applications
IET Cyber-Physical Systems: Theory and Applications Computer Science-Computer Networks and Communications
CiteScore
5.40
自引率
6.70%
发文量
17
审稿时长
19 weeks
期刊最新文献
Guest Editorial: IoT-based secure health monitoring and tracking through estimated computing SEIR-driven semantic integration framework: Internet of Things-enhanced epidemiological surveillance in COVID-19 outbreaks using recurrent neural networks A machine learning model for Alzheimer's disease prediction Securing the Internet of Medical Things with ECG-based PUF encryption Status, challenges, and promises of data-driven battery lifetime prediction under cyber-physical system context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1