{"title":"Thermohydraulic performance of hybrid ribs pattern combining V and arc shape ribs in solar air heater","authors":"Tabish Alam, Deepak Gupta","doi":"10.1080/08916152.2023.2260378","DOIUrl":null,"url":null,"abstract":"ABSTRACTSolar energy is a limitless and ecological-friendly renewable energy source, which can be utilized for varieties of application ranging from heating/cooling, power generation, drying, and in heat-processing industries. Solar air heaters (SAHs) are among the best options for harnessing solar energy for thermal purposes like heating and drying. However, the performance of SAH is not sufficient to take into practical applications. Low performance of SAH is due to its low convective heat transfer capability because of smooth absorber plate. In this regard, an attempt has been made to enhance the heat transfer capability of SAH exploiting hybrid ribs in this paper. Hybrid rib roughness pattern incorporating to V shape ribs and arc shape ribs has been designed and tested experimentally in the SAH duct under the following range of Reynolds number (Re) from 2000 to 16,000. The various roughness patterns, i.e., arc angle (α), angle of attack (β), relative V ribs position (d/w), relative rib pitch (p/e), and relative rib height (e/D), have been exploited in the range of 30º-75º, 30º-75º, 0.2–0.10, 8–10, and 0.023–0.043, respectively. As a result, Nusselt number (Nu) and friction factor (f) have been enhanced significantly. Maximum enhancement in Nu has been found as 3.08 at α = 45º, β = 60º, d/w = 0.65, p/e = 10, and e/D = 0.043. Thermohydraulic performance (TP) parameters have also been evaluated for all set of parameters of hybrid ribs pattern and it found to be maximum 2.18 at α = 30º, β = 60º, d/w = 1.0, p/e = 10, and e/D = 0.043.KEYWORDS: Thermohydraulic performancehybrid ribs patternsolar air heaternusselt number AcknowledgmentsThis work is carried out under Indo-US Project (GAP-806).Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":12091,"journal":{"name":"Experimental Heat Transfer","volume":"2016 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08916152.2023.2260378","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTSolar energy is a limitless and ecological-friendly renewable energy source, which can be utilized for varieties of application ranging from heating/cooling, power generation, drying, and in heat-processing industries. Solar air heaters (SAHs) are among the best options for harnessing solar energy for thermal purposes like heating and drying. However, the performance of SAH is not sufficient to take into practical applications. Low performance of SAH is due to its low convective heat transfer capability because of smooth absorber plate. In this regard, an attempt has been made to enhance the heat transfer capability of SAH exploiting hybrid ribs in this paper. Hybrid rib roughness pattern incorporating to V shape ribs and arc shape ribs has been designed and tested experimentally in the SAH duct under the following range of Reynolds number (Re) from 2000 to 16,000. The various roughness patterns, i.e., arc angle (α), angle of attack (β), relative V ribs position (d/w), relative rib pitch (p/e), and relative rib height (e/D), have been exploited in the range of 30º-75º, 30º-75º, 0.2–0.10, 8–10, and 0.023–0.043, respectively. As a result, Nusselt number (Nu) and friction factor (f) have been enhanced significantly. Maximum enhancement in Nu has been found as 3.08 at α = 45º, β = 60º, d/w = 0.65, p/e = 10, and e/D = 0.043. Thermohydraulic performance (TP) parameters have also been evaluated for all set of parameters of hybrid ribs pattern and it found to be maximum 2.18 at α = 30º, β = 60º, d/w = 1.0, p/e = 10, and e/D = 0.043.KEYWORDS: Thermohydraulic performancehybrid ribs patternsolar air heaternusselt number AcknowledgmentsThis work is carried out under Indo-US Project (GAP-806).Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Experimental Heat Transfer provides a forum for experimentally based high quality research articles and communications in the general area of heat-mass transfer and the related energy fields.
In addition to the established multifaceted areas of heat transfer and the associated thermal energy conversion, transport, and storage, the journal also communicates contributions from new and emerging areas of research such as micro- and nanoscale science and technology, life sciences and biomedical engineering, manufacturing processes, materials science, and engineering. Heat transfer plays an important role in all of these areas, particularly in the form of innovative experiments and systems for direct measurements and analysis, as well as to verify or complement theoretical models.
All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer reviews are single blind and submission is online via ScholarOne Manuscripts. Original, normal size articles, as well as technical notes are considered. Review articles require previous communication and approval by the Editor before submission for further consideration.