Experimental Study of Turbulence Response in a Slowly Accelerating Turbulent Channel Flow

IF 1.8 3区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Fluids Engineering-Transactions of the Asme Pub Date : 2023-04-03 DOI:10.1115/1.4062166
Benjamin Oluwadare, Shuisheng He
{"title":"Experimental Study of Turbulence Response in a Slowly Accelerating Turbulent Channel Flow","authors":"Benjamin Oluwadare, Shuisheng He","doi":"10.1115/1.4062166","DOIUrl":null,"url":null,"abstract":"Abstract An investigation of flow acceleration from initial statistically steady turbulent flow to final statistically steady turbulent flow is conducted experimentally using particle image velocimetry (PIV) and constant temperature anemometry (CTA). The turbulence response is investigated as the acceleration periods and acceleration rates are varied in a controlled fashion. This work expands the research by Mathur et al. (2018, “Temporal Acceleration of a Turbulent Channel Flow,” J. Fluid Mech., 835, pp. 471–490.) studying slower and longer transient flows. It also complements the numerical studies of a step increase in the flowrate of (He and Seddighi, 2013, “Turbulence in Transient Channel Flow,” J. Fluid Mech., 715, pp. 60–102. and He and Seddighi, 2015, “Transition of Transient Channel Flow After a Change in Reynolds Number,” J. Fluid Mech., 764, pp. 395–427.). The results obtained from the current investigations are qualitatively similar to those obtained previously. Consistent with previous studies, the response of turbulence in the current slow transient flow is again characterized by a laminar-turbulent transition. The initial increase of the flow development among the cases investigated can be categorized as faster, medium, and slower responses. Modifications are made to the equivalent Reynolds number and the initial turbulence intensity proposed earlier in order to account for the slow accelerating flow rates and the continuous change of the bulk velocities of the cases investigated. It has been shown that the critical equivalent Reynolds number based on these modifications and the initial turbulence intensity are well correlated for all cases investigated and a power-law relation is established.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062166","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract An investigation of flow acceleration from initial statistically steady turbulent flow to final statistically steady turbulent flow is conducted experimentally using particle image velocimetry (PIV) and constant temperature anemometry (CTA). The turbulence response is investigated as the acceleration periods and acceleration rates are varied in a controlled fashion. This work expands the research by Mathur et al. (2018, “Temporal Acceleration of a Turbulent Channel Flow,” J. Fluid Mech., 835, pp. 471–490.) studying slower and longer transient flows. It also complements the numerical studies of a step increase in the flowrate of (He and Seddighi, 2013, “Turbulence in Transient Channel Flow,” J. Fluid Mech., 715, pp. 60–102. and He and Seddighi, 2015, “Transition of Transient Channel Flow After a Change in Reynolds Number,” J. Fluid Mech., 764, pp. 395–427.). The results obtained from the current investigations are qualitatively similar to those obtained previously. Consistent with previous studies, the response of turbulence in the current slow transient flow is again characterized by a laminar-turbulent transition. The initial increase of the flow development among the cases investigated can be categorized as faster, medium, and slower responses. Modifications are made to the equivalent Reynolds number and the initial turbulence intensity proposed earlier in order to account for the slow accelerating flow rates and the continuous change of the bulk velocities of the cases investigated. It has been shown that the critical equivalent Reynolds number based on these modifications and the initial turbulence intensity are well correlated for all cases investigated and a power-law relation is established.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
慢加速湍流通道湍流响应的实验研究
摘要采用粒子图像测速(PIV)和恒温测速(CTA)对初始统计稳定湍流到最终统计稳定湍流的加速度进行了实验研究。研究了当加速度周期和加速度速率以受控方式变化时的湍流响应。这项工作扩展了Mathur等人(2018)的研究,“湍流通道流动的时间加速度”,J.流体力学。, 835页,471-490页),研究较慢和较长的瞬态流动。这也补充了(He和Seddighi, 2013,“湍流在瞬态通道流动”,J.流体力学。, 715页,60-102页。and He and Seddighi, 2015,“雷诺数变化后瞬态通道流动的过渡”,流体力学。第764页,395-427页)。从目前的调查中获得的结果在质量上与以前获得的结果相似。与以往的研究一致,当前缓慢瞬态流动中的湍流响应再次以层流-湍流过渡为特征。在所调查的病例中,流动发展的初始增加可分为快速、中等和较慢的响应。为了考虑所研究的情况下的缓慢加速流速和体速度的连续变化,对先前提出的等效雷诺数和初始湍流强度进行了修改。结果表明,在所研究的所有情况下,基于这些修正的临界等效雷诺数与初始湍流强度具有良好的相关性,并建立了幂律关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
165
审稿时长
5.0 months
期刊介绍: Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes
期刊最新文献
Energy Contribution Study Of Blade Cavitation Control By Obstacles In A Waterjet Pump Based On mPOD And EEMD A Method to Determine Bubble Distribution in Liquid Using Data of Inverse Acoustical Scattering Effect of Perforation on Vortex Characteristics of a Micro-Vortex Generator Mounted on a Flat Plate Numerical Studies On the Oil Film Thickness in the Case of Stratified Flow with Different Oil-Water Flow Combinations Through Sudden Contraction Tube Orifice Jet Curvature And Its Interaction With A Row Of Short Pin-Fins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1