Mary Mambwe, Kennedy Kabaso Kalebaila, Todd Johnson, John Moma
{"title":"Modification and characterization of selected Zambian clays for potential use as photocatalysts","authors":"Mary Mambwe, Kennedy Kabaso Kalebaila, Todd Johnson, John Moma","doi":"10.5155/eurjchem.14.3.362-369.2451","DOIUrl":null,"url":null,"abstract":"Natural materials such as clay are valued for their favorable physical and chemical characteristics on the surface. In this study, the selected Zambian clay materials are immobilized with TiO2 and manganese ions to determine their suitability for use as photocatalysts. SiO2 and Al2O3 oxide composition of Zambian clays was obtained in the range of 35.08-52.63/35.15-52.72 and 13.85-21.73/13.77-21.80, respectively, by inductively coupled plasma (ICP) and X-ray fluorescence (XRF); while Energy dispersive spectroscopy (EDS) of modified clays showed that they have 1.54% incorporation of Ti and 4.98% Mn for Chingola clay to act as UV-Vis absorbers. According to the powder X-ray diffraction analysis of raw clays, the primary phase of all samples is quartz and contains low concentrations of bentonite and kaolinite. The scanning electron microscope (SEM) showed fluffy morphology with agglomeration, while the particle sizes of the clay photocatalysts with the use of transmission electron microscopy (TEM) ranged between 3.0 and 4.8 nm. UV-vis spectroscopy of the samples showed bandgap energies ranging from 2.52-3.08 eV. The surface areas, pore volumes, and pore sizes of the investigated modified and unmodified clays determined by the Brunauer, Teller, Emmett/Barrett Joyner Halenda (BET/BJH) model ranged from 12.06-64.51 m2/g, 0.029-0.068 cm3/g, and 0.642-2.802 nm, respectively. To enhance the mixing of oil and clay, the adsorbents were grafted with silane and confirmed by Fourier transform infrared (FTIR) spectroscopy through CH peaks at ~1450 and ~2860 cm-1. The modified clay materials exhibited favorable properties for use as photocatalysts.","PeriodicalId":11778,"journal":{"name":"European Journal of Chemistry","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5155/eurjchem.14.3.362-369.2451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Natural materials such as clay are valued for their favorable physical and chemical characteristics on the surface. In this study, the selected Zambian clay materials are immobilized with TiO2 and manganese ions to determine their suitability for use as photocatalysts. SiO2 and Al2O3 oxide composition of Zambian clays was obtained in the range of 35.08-52.63/35.15-52.72 and 13.85-21.73/13.77-21.80, respectively, by inductively coupled plasma (ICP) and X-ray fluorescence (XRF); while Energy dispersive spectroscopy (EDS) of modified clays showed that they have 1.54% incorporation of Ti and 4.98% Mn for Chingola clay to act as UV-Vis absorbers. According to the powder X-ray diffraction analysis of raw clays, the primary phase of all samples is quartz and contains low concentrations of bentonite and kaolinite. The scanning electron microscope (SEM) showed fluffy morphology with agglomeration, while the particle sizes of the clay photocatalysts with the use of transmission electron microscopy (TEM) ranged between 3.0 and 4.8 nm. UV-vis spectroscopy of the samples showed bandgap energies ranging from 2.52-3.08 eV. The surface areas, pore volumes, and pore sizes of the investigated modified and unmodified clays determined by the Brunauer, Teller, Emmett/Barrett Joyner Halenda (BET/BJH) model ranged from 12.06-64.51 m2/g, 0.029-0.068 cm3/g, and 0.642-2.802 nm, respectively. To enhance the mixing of oil and clay, the adsorbents were grafted with silane and confirmed by Fourier transform infrared (FTIR) spectroscopy through CH peaks at ~1450 and ~2860 cm-1. The modified clay materials exhibited favorable properties for use as photocatalysts.