Effect of the Addition of Dispersed Reinforcement on the Resilient Modulus of Slightly Cemented Non-Cohesive Soil

IF 0.7 Q4 MECHANICS Studia Geotechnica et Mechanica Pub Date : 2023-09-30 DOI:10.2478/sgem-2023-0013
Mariola Wasil, Patryk Dobrzycki, Katarzyna Zabielska-Adamska
{"title":"Effect of the Addition of Dispersed Reinforcement on the Resilient Modulus of Slightly Cemented Non-Cohesive Soil","authors":"Mariola Wasil, Patryk Dobrzycki, Katarzyna Zabielska-Adamska","doi":"10.2478/sgem-2023-0013","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this article is to determine the effect of the addition of dispersed reinforcement on the resilient modulus of non-cohesive soil used as material for improved subgrade or subbase course of the pavement structure. Resilient modulus ( M r ) is a parameter used in road construction, which characterises soil subgrade or base aggregates stiffness in flexible pavement subjected to the traffic load. This article presents laboratory test results of non-cohesive coarse material (gravelly sand – grSa – without fines) with the addition of 1.5% cement and dispersed reinforcement – polypropylene fibres in lengths of 12, 18 and 40 mm. Tests were conducted on the samples with various percentages of fibres (0, 0.2 and 0.3%) relating to the dry mass of the soil. Samples were compacted according to the standard Proctor (SP) and modified Proctor (MP) methods. Main laboratory tests were conducted in the triaxial apparatus enabling testing samples subjected to cyclic loads according to AASHTO T307 standard. Resilient modulus was determined after 7 and 28 days of curing. The results indicate the influence of fibre amount, fibre length, and curing time on the M r of the soil modified with 1.5% of cement. The obtained results were also influenced by the method of compaction. The addition of polypropylene fibres decreases the resilient modulus of soil stabilised by 1.5% of cement. The best results of dispersive reinforcement were obtained for samples containing 0.3% of fibres with a length of 18 mm, compacted by the MP methods.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2023-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The aim of this article is to determine the effect of the addition of dispersed reinforcement on the resilient modulus of non-cohesive soil used as material for improved subgrade or subbase course of the pavement structure. Resilient modulus ( M r ) is a parameter used in road construction, which characterises soil subgrade or base aggregates stiffness in flexible pavement subjected to the traffic load. This article presents laboratory test results of non-cohesive coarse material (gravelly sand – grSa – without fines) with the addition of 1.5% cement and dispersed reinforcement – polypropylene fibres in lengths of 12, 18 and 40 mm. Tests were conducted on the samples with various percentages of fibres (0, 0.2 and 0.3%) relating to the dry mass of the soil. Samples were compacted according to the standard Proctor (SP) and modified Proctor (MP) methods. Main laboratory tests were conducted in the triaxial apparatus enabling testing samples subjected to cyclic loads according to AASHTO T307 standard. Resilient modulus was determined after 7 and 28 days of curing. The results indicate the influence of fibre amount, fibre length, and curing time on the M r of the soil modified with 1.5% of cement. The obtained results were also influenced by the method of compaction. The addition of polypropylene fibres decreases the resilient modulus of soil stabilised by 1.5% of cement. The best results of dispersive reinforcement were obtained for samples containing 0.3% of fibres with a length of 18 mm, compacted by the MP methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分散配筋对微胶结非粘性土弹性模量的影响
摘要:本文的目的是确定分散钢筋的加入对非粘性土的弹性模量的影响,作为改善路基或基层路面结构的材料。弹性模量(M r)是道路施工中使用的一个参数,它表征了柔性路面中土壤路基或基层骨料在交通荷载作用下的刚度。本文介绍了添加1.5%水泥和长度分别为12、18和40 mm的分散增强聚丙烯纤维的非粘性粗材料(砾石砂- grSa -无细粒)的实验室测试结果。对与土壤干质量有关的纤维的不同百分比(0,0.2和0.3%)的样品进行了测试。采用标准的Proctor (SP)法和改良的Proctor (MP)法对样品进行压实。主要实验室试验是在三轴装置上进行的,使测试样品受到AASHTO T307标准的循环载荷。在养护7天和28天后测定弹性模量。结果表明,掺量1.5%的水泥改性土,纤维量、纤维长度和养护时间对其mr的影响。压实方法对所得结果也有影响。聚丙烯纤维的加入使水泥稳定土的弹性模量降低1.5%。用MP方法压实的纤维长度为18 mm,纤维含量为0.3%的样品获得了最佳的分散增强效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
20
审稿时长
16 weeks
期刊介绍: An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories
期刊最新文献
Modeling of rigid inclusion ground improvements in large-scale geotechnical simulations Seismicity and Tectonics of the Republic of Kosovo Small-strain stiffness of selected anthropogenic aggregates from bender element tests The Role of Spatial Distribution of Geotechnical Soil Parameters in Site Investigation Geometrization of a 3D numerical model of an underground facility based on the results of terrestrial laser scanning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1