Synthesis and structural characterization and DFT calculations of the organic salt crystal obtaining 9-aminoacridine and picric acid: 9-Aminoacridinium picrate

Fatma Aydin, Nahide Burcu Arslan
{"title":"Synthesis and structural characterization and DFT calculations of the organic salt crystal obtaining 9-aminoacridine and picric acid: 9-Aminoacridinium picrate","authors":"Fatma Aydin, Nahide Burcu Arslan","doi":"10.5155/eurjchem.14.3.376-384.2462","DOIUrl":null,"url":null,"abstract":"Organic salt, 9-aminoacridinium picrate (9-AAcPc), containing equimolar quantities of 9-aminoacridine and picric acid was obtained and a single crystal was grown by the slow evaporation method in the mixture of methanol: tetrahydrofuran solvent (1: 1, v: v). The molecular structure of the prepared compound was confirmed by FT-IR, 1H NMR, and 13C NMR spectroscopic methods, as well as single crystal X-ray diffraction analysis. The X-ray diffraction analysis of the crystal structure of the title compound showed the presence of the triclinic space group P-1 with no. 2, a = 8.2811(7) Å, b = 10.1003(9) Å, c = 13.4484(13) Å, α = 83.521(3)°, β = 83.330(3)°, γ = 66.595(3)°, V = 1022.56(16) Å3, Z = 2, μ(MoKα) = 0.108 mm-1, Dcalc = 1.375 g/cm3, 56338 reflections measured (5.89° ≤ 2Θ ≤ 56.704°), 5097 unique (Rint = 0.0400, Rsigma = 0.0210) which were used in all calculations. The final R1 was 0.0552 (I > 2σ(I)) and wR2 was 0.1757 (all data). The molecular geometry was also optimized using density functional theory. The frontier molecular orbitals were calculated, and we discussed the probability that the proton transfers from the phenolic OH group of picric acid to different nitrogen units. The calculated electronic structure properties of the title molecule, such as the HOMO and LUMO analysis, and different molecular electrostatic potential maps, were obtained by using the density functional theory method, and the calculated structure was compared with the experimental structure. The thermal stability of the crystal was also analyzed using the TGA/DTG technique.","PeriodicalId":11778,"journal":{"name":"European Journal of Chemistry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5155/eurjchem.14.3.376-384.2462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Organic salt, 9-aminoacridinium picrate (9-AAcPc), containing equimolar quantities of 9-aminoacridine and picric acid was obtained and a single crystal was grown by the slow evaporation method in the mixture of methanol: tetrahydrofuran solvent (1: 1, v: v). The molecular structure of the prepared compound was confirmed by FT-IR, 1H NMR, and 13C NMR spectroscopic methods, as well as single crystal X-ray diffraction analysis. The X-ray diffraction analysis of the crystal structure of the title compound showed the presence of the triclinic space group P-1 with no. 2, a = 8.2811(7) Å, b = 10.1003(9) Å, c = 13.4484(13) Å, α = 83.521(3)°, β = 83.330(3)°, γ = 66.595(3)°, V = 1022.56(16) Å3, Z = 2, μ(MoKα) = 0.108 mm-1, Dcalc = 1.375 g/cm3, 56338 reflections measured (5.89° ≤ 2Θ ≤ 56.704°), 5097 unique (Rint = 0.0400, Rsigma = 0.0210) which were used in all calculations. The final R1 was 0.0552 (I > 2σ(I)) and wR2 was 0.1757 (all data). The molecular geometry was also optimized using density functional theory. The frontier molecular orbitals were calculated, and we discussed the probability that the proton transfers from the phenolic OH group of picric acid to different nitrogen units. The calculated electronic structure properties of the title molecule, such as the HOMO and LUMO analysis, and different molecular electrostatic potential maps, were obtained by using the density functional theory method, and the calculated structure was compared with the experimental structure. The thermal stability of the crystal was also analyzed using the TGA/DTG technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
9-氨基吖啶和苦味酸有机盐晶体的合成、结构表征和DFT计算:9-氨基吖啶苦味酸
以甲醇:四氢呋喃(1:1,v: v)为溶剂,采用慢蒸发法制备了9-氨基吖啶酸苦味酸(9-AAcPc)有机盐,并通过FT-IR、1H NMR和13C NMR波谱法以及单晶x射线衍射分析证实了所制化合物的分子结构。对标题化合物的晶体结构进行了x射线衍射分析,结果表明该化合物存在P-1三斜空间群。2, a = 8.2811(7) Å, b = 10.1003(9) Å, c = 13.4484(13) Å, α = 83.521(3)°,β = 83.330(3)°,γ = 66.595(3)°,V = 1022.56(16) Å3, Z = 2, μ(MoKα) = 0.108 mm-1, Dcalc = 1.375 g/cm3,测量反射56338(5.89°≤2Θ≤56.704°),unique 5097 (Rint = 0.0400, Rsigma = 0.0210),用于所有计算。最终R1为0.0552 (I >2σ(I)), wR2为0.1757(所有数据)。利用密度泛函理论对分子几何结构进行了优化。计算了分子前沿轨道,讨论了质子从苦味酸酚羟基转移到不同氮基的概率。利用密度泛函理论方法得到了标题分子的计算电子结构性质,如HOMO和LUMO分析,以及不同的分子静电势图,并将计算结构与实验结构进行了比较。并用TGA/DTG技术分析了晶体的热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geochemical survey of the Nyamyumba and Bugarama hot springs in the western province of Rwanda 4-Carboxyanilinium dihydrogen phosphate monohydrate, an organophosphate adducts of 4-amino benzoic acid: Structural, vibrational, thermal, and computational studies Comparative study of 4-((4-aminophenyl)diazenyl)-2-((2-phenylhydrazono)methyl)phenol and N-(4-((4-hydroxy-3-((2-phenylhydrazono)methyl)phenyl)diazenyl)phenyl)acetamide - DFT method Investigation of the antioxidant properties of Persea americana seed flour altered by the fermentation process with Lactobacillus plantarum Effect of air pollution on plant life in the city of Chittagong, Bangladesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1