AUTOMATIC POLYP SEMANTIC SEGMENTATION USING WIRELESS CAPSULE ENDOSCOPY IMAGES WITH VARIOUS CONVOLUTIONAL NEURAL NETWORK AND OPTIMIZATION TECHNIQUES: A COMPARISON AND PERFORMANCE EVALUATION
{"title":"AUTOMATIC POLYP SEMANTIC SEGMENTATION USING WIRELESS CAPSULE ENDOSCOPY IMAGES WITH VARIOUS CONVOLUTIONAL NEURAL NETWORK AND OPTIMIZATION TECHNIQUES: A COMPARISON AND PERFORMANCE EVALUATION","authors":"Jothiraj Selvaraj, A. K. Jayanthy","doi":"10.4015/s1016237223500266","DOIUrl":null,"url":null,"abstract":"Colorectal cancer (CRC), ranking third most prevalent cancer type, can be diagnosed with the detection of polyps in the colon and rectum through endoscopic procedures facilitating prompt treatment. During visualization of gastrointestinal tract by the physician, there is high probability of miss rates and reviewing of the images is laborious. Automatic segmentation and detection are enabled with the convolutional neural networks (CNN). We segmented the polyps from the wireless capsule endoscopy images of Kvasir dataset using various CNN models. We have presented nine optimizers for each architecture and evaluated the performance parameters. The optimizers were graded based on the performance metrics in order to provide an insight for the researchers on the selection of optimizer and architecture. On comparison of the performance metrics of the pretrained and U-net-based architecture, the Adaptive Moment Estimation (ADAM) and Root Mean Squared Propagation (RMSPROP) optimizers received the highest score of 43 in the ranking, DiffGrad and Nesterov-accelerated Adaptive Moment Estimation (NADAM) ranked second with the score of 13, the Adaptive Delta (ADADELTA) ranked third with a score of 2, whereas Stochastic Gradient Descent (SGD), Adaptive Gradient Descent (ADAGRAD), and Adaptive Max (ADAMAX) optimizers performed least in the evaluation. Based on the deep learning application, the optimizer employed varies by considering computational speed, memory and computational time. This preliminary research provides the necessary key information for consideration in the development of an architecture with utilization of an optimizer.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"105 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC), ranking third most prevalent cancer type, can be diagnosed with the detection of polyps in the colon and rectum through endoscopic procedures facilitating prompt treatment. During visualization of gastrointestinal tract by the physician, there is high probability of miss rates and reviewing of the images is laborious. Automatic segmentation and detection are enabled with the convolutional neural networks (CNN). We segmented the polyps from the wireless capsule endoscopy images of Kvasir dataset using various CNN models. We have presented nine optimizers for each architecture and evaluated the performance parameters. The optimizers were graded based on the performance metrics in order to provide an insight for the researchers on the selection of optimizer and architecture. On comparison of the performance metrics of the pretrained and U-net-based architecture, the Adaptive Moment Estimation (ADAM) and Root Mean Squared Propagation (RMSPROP) optimizers received the highest score of 43 in the ranking, DiffGrad and Nesterov-accelerated Adaptive Moment Estimation (NADAM) ranked second with the score of 13, the Adaptive Delta (ADADELTA) ranked third with a score of 2, whereas Stochastic Gradient Descent (SGD), Adaptive Gradient Descent (ADAGRAD), and Adaptive Max (ADAMAX) optimizers performed least in the evaluation. Based on the deep learning application, the optimizer employed varies by considering computational speed, memory and computational time. This preliminary research provides the necessary key information for consideration in the development of an architecture with utilization of an optimizer.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.